

October 8, 2018 Reference No 003250

Mr David Linnear United States Environmental Protection Agency Region V, Mail Code (SR-6J) 77 West Jackson Boulevard Chicago, Illinois 60604

Dear Mr. Linnear.

Re: Progress Report No. 184: July through September 2018

Remedial Design/Remedial Action Pristine, Inc. Site, Reading, Ohio

Pursuant to Section XI of the Consent Decree for the United States of America vs. American Greetings Corporation et al. – Civil Action C-89-837, which became effective November 23, 1990, this report is submitted as the quarterly progress report for the months of July through September 2018

1. Activities Completed During the Reporting Period

1.1 Site Activities

- 1 Continued sampling activities related to the operation and maintenance of the groundwater treatment system.
- 2 On July 16, 2018, a hydraulic monitoring event at the Pristine monitoring wells was conducted
- 3 The annual groundwater sampling event (Round 50) was conducted between July 16 and August 8, 2018.
- 4 On July 20, 2018, the Pristine treatment plant was struck by lightning. The lightning strike damaged several motors, automatic valves, the site computer and instrumentation at the facility. The damaged equipment was subsequently replaced with new equipment. The treatment plant was off line for approximately five days while repairs were being completed following the lightning strike.
- The cleaning of off-Site extraction well EW5 was conducted between August 13 and August 17, 2018

 A breach in the well casing was discovered during the cleaning process
- On September 20, 2018, the Site backflow preventer was successfully tested. The results of the backflow preventer test were forwarded to the Hamilton County Health Department.
- 7 On September 25, 2018, Ron Ware of the Ohio EPA, Division of Surface Water, conducted an audit at the Pristine Site
- 8 On September 25, 2018, the Pristine Facility Trust and GHD met with the City of Reading to review the Pristine Site Institutional Controls (ICs)

 The total volume of treated water discharged to Mill Creek as of October 1, 2018 was approximately 1,807,898,291 gallons The total volume of treated water discharged to Mill Creek during July through September 2018 was approximately 4,673,242 gallons (representing 96.1 percent online time for the groundwater treatment system)

1.2 Correspondence

- 1 The Pristine Site quarterly progress report (Report #183) was sent to the U.S. EPA, the Ohio EPA and the Pristine Facility Trust on July 5, 2018
- The Pristine Facility Trust sent an email to the U S EPA on July 11, 2018 informing the agency of the Pristine Trustees' intention to restart groundwater pumping at off-Site extraction well EW5
- 3 The semi-annual financial report for the Pristine Site was sent to the U.S. EPA on July 11, 2018
- The monthly effluent monitoring report for the treatment facility for June 2018 was sent to the U S EPA, the Ohio EPA and the Pristine Facility Trust on July 23, 2018
- The monthly effluent monitoring report for the treatment facility for July 2018 was sent to the U S EPA, the Ohio EPA, and the Pristine Facility Trust on August 15, 2018
- 6 On August 10, 2018, a letter was received from the U S EPA which responded to the Pristine Trustees' proposal to amend the MNA Pilot Program by restarting groundwater pumping at off-Site extraction well EW5
- The monthly effluent monitoring report for the treatment facility for August 2018 was sent to the U S EPA, the Ohio EPA, and the Pristine Facility Trust on September 11, 2018
- 8 On September 26, 2018, the Pristine Trustees sent a letter to the U S EPA and the Ohio EPA which responded to the U.S.EPA's August 10, 2018 letter
- 9 On September 28, 2018, a letter was received from Ohio EPA which presented the findings from the Ohio EPA audit at the Pristine Site that was conducted on September 25, 2018 The letter did not identify any issues at the Site requiring corrective action

003250Linnear-22 2

2. Activities Scheduled for Next Reporting Period

- 1 Continue extraction/treatment system operations
- 2 Restart off-Site groundwater pumping
- 3 Complete a quarterly hydraulic monitoring event of lower aguifer monitoring wells.
- 4 Submit the Round 50 Groundwater Sampling Report

3. List of Attachments

Attachment 1 July 16, 2018 Water Levels and Summary of Average Extraction

Well Pumping Rates

Attachment 2 Summary of Treatment System Analytical Results.

Attachment 3 Summary of Operation and Maintenance Monitoring

Attachment 4 Summary of Groundwater and ISVE Treatment System Downtime

ally P Valeto

Ashlev Valentine

Should you have any questions on the above, please do not hesitate to contact us

Sincerely,

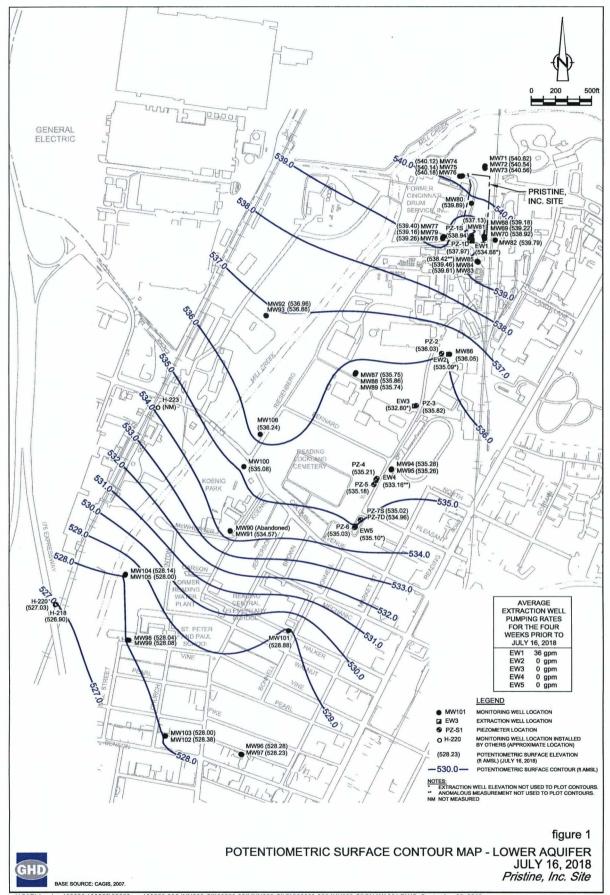
GHD

Henry Cooke

HC/po/22 Encl

cc Scott Glum (Ohio EPA)

Ron Pitzer (Pristine Trust)


Martha Farr (Pristine Trust)
Peggy Dewan (Pristine Trust)

Steve Haughey (Frost Brown Todd LLC)

Mike Foster (Eli Lilly and Company)

Julian Hayward (GHD)

Summary of Average Extraction Well	Attachment 1 Pumping Rates

- .	• • • • • • • • • • • • • • • • • • •		m.ee	
<u>Date</u>	Current Reading ⁽¹⁾	Previous Reading	Difference	Average Pumping Rate (gpm)(
1/2/2009	86,411,000	86,035,000	376,000	37
1/9/2009	86,785,000	86,411,000	374,000	37
1/16/2009	87,163,000	86,785,000	378,000	38
1/23/2009	87,543,000	87,163,000	380,000	38
1/30/2009	87,924,000	87,543,000	381,000	38
2/6/2009	88,304,000	87,924,000	380,000	38
2/13/2009	88,700,000	88,304,000	396,000	39
2/20/2009	89,043,000	88,700,000	343,000	34
2/27/2009	89,415,000	89,043,000	372,000	37
3/6/2009	89,788,000	89,415,000	373,000	37
3/13/2009	90,131,000	89,788,000	343,000	34
3/20/2009	90,495,000	90,131,000	364,000	36
3/27/2009	90,871,000	90,495,000	376,000	37
4/3/2009	91,251,000	90,871,000	380,000	38
4/10/2009	91,627,000	91,251,000	376,000	37
4/17/2009	92,001,000	91,627,000	374,000	37
4/24/2009	92,191,000	92,001,000	190,000	19
5/1/2009	92,273,000	92,191,000	82,000	8
5/8/2009	92,476,000	92,273,000	203,000	20
5/15/2009	92,807,000	92,476,000	331,000	33
5/22/2009	93,183,000	92,807,000	376,000	37
5/29/2009 6/5/2009	93,515,000	93,183,000	332,000	33 37
6/12/2009	93,886,000 94,256,000	93,515,000 93,886,000	371,000 370,000	37 37
6/19/2009	94,630,000	94,256,000	•	37 37
6/26/2009	95,008,000	94,630,000	374,000 378,000	3 <i>7</i> 38
7/3/2009	95,386,000	95,008,000	378,000	38
7/10/2009	95,761,000			37
7/17/2009	· · ·	95,386,000	375,000	
	96,141,000	95,761,000	380,000	38
7/24/2009	96,519,000	96,141,000	378,000	38
7/31/2009	96,897,000	96,519,000	378,000	38
8/7/2009	97,275,000	96,897,000	378,000	38
8/14/2009	97,631,000	97,275,000	356,000	35
8/21/2009	98,002,000	97,631,000	371,000	37
8/28/2009	98,384,000	98,002,000	382,000	38
9/4/2009	98,754,000	98,384,000	370,000	37
9/11/2009	99,133,000	98,754,000	379,000	38
9/18/2009	99,513,000	99,133,000	380,000	38
9/25/2009	99,891,000	99,513,000	378,000	38
10/2/2009	100,266,000	99,891,000	375,000	37
10/9/2009	100,646,000	100,266,000	380,000	38
10/16/2009	101,025,000	100,646,000	379,000	38
10/23/2009	101,407,000	101,025,000	382,000	38
10/30/2009	101,785,000	101,407,000	378,000	38
11/6/2009	102,147,000	101,785,000	362,000	36
11/13/2009	102,526,000	102,147,000	379,000	38
11/20/2009	102,902,000	102,526,000	376,000	37
11/27/2009	103,281,000	102,902,000	379,000	38
12/4/2009	103,662,000	103,281,000	381,000	38
12/11/2009	104,022,000	103,662,000	360,000	36
12/18/2009	104,377,000	104,022,000	355,000	35
12/25/2009	104,751,000	104,377,000	374,000	37
		, ,	,	5.

Dato	Current Reading ⁽¹⁾	Previous Reading	Difference	Average Pumping Rate (gpm)
<u>Date</u> 1/1/2010	105,125,000	104,751,000	374,000	37
1/8/2010	105,486,000	105,125,000	361,000	36
1/15/2010	104,706,000	105,486,000	-780,000	-77
1/22/2010	105,094,000	104,706,000	388,000	38
1/29/2010	105,483,000	105,094,000	389,000	39
2/5/2010	105,863,000	105,483,000	380,000	38
2/12/2010	106,247,000	105,863,000	384,000	38
2/19/2010	106,634,000	106,247,000	387,000	38
2/26/2010	107,006,000	106,634,000	372,000	37
	107,386,000	107,006,000	380,000	38
3/5/2010 3/12/2010	107,774,000	107,386,000	388,000	38
		107,774,000	386,000	38
3/19/2010	108,160,000		375,000	37
3/26/2010	108,535,000	108,160,000		30
4/2/2010	108,837,000	108,535,000	302,000	39
4/9/2010	109,228,000	108,837,000	391,000	39
4/16/2010	109,617,000	109,228,000	389,000	19
4/23/2010	109,804,000	109,617,000	187,000	0
4/30/2010	109,807,000	109,804,000	3,000 201,000	20
5/7/2010	110,008,000	109,807,000	380,000	38
5/14/2010	110,388,000	110,008,000 110,388,000	380,000	38
5/21/2010	110,768,000		353,000	35
5/28/2010	111,121,000	110,768,000	381,000	38
6/4/2010	111,502,000	111,121,000	380,000	38
6/11/2010	111,882,000	111,502,000 111,882,000	376,000	37
6/18/2010	112,258,000 112,613,000	112,258,000	355,000	3 <i>7</i> 35
6/25/2010	112,937,000	112,613,000	324,000	32
7/2/2010	·		380,000	38
7/9/2010	113,317,000	112,937,000 113,317,000	373,000	37
7/16/2010 7/23/2010	113,690,000	113,690,000	380,000	38
	114,070,000		370,000	37
7/30/2010	114,440,000 114,819,000	114,070,000 114,440,000	379,000	38
8/6/2010	115,200,000	114,819,000	381,000	38
8/13/2010		115,200,000	385,000	38
8/20/2010	115,585,000	115,585,000	387,000	38
8/27/2010	115,972,000	115,972,000	385,000	38
9/3/2010	116,357,000	116,357,000	382,000	38
9/10/2010	116,739,000	116,739,000	374,000	37
9/17/2010	117,113,000	117,113,000	375,000	37
9/24/2010	117,488,000		390,000	39
10/1/2010	117,878,000	117,488,000	369,000	37
10/8/2010	118,247,000	117,878,000 118,247,000	365,000	36
10/15/2010	118,612,000	118,612,000	296,000	29
10/22/2010	118,908,000 119,281,000	118,908,000	373,000	37
10/29/2010		119,281,000	326,000	32
11/5/2010 11/12/2010	119,607,000 119,947,000	119,607,000	340,000	34
	120,299,000	119,947,000	352,000	35
11/19/2010		120,299,000	364,000	36
11/26/2010	120,663,000 121,029,000	120,663,000	366,000	36
12/3/2010	· ·	121,029,000	399,000	40
12/10/2010	121,428,000			35
12/17/2010	121,781,000	121,428,000	353,000	38
12/24/2010	122,163,000	121,781,000	382,000 361,000	36
12/31/2010	122,524,000	122,163,000	301,000	30

- .	O 15 " (1)			
<u>Date</u>	Current Reading ⁽¹⁾	Previous Reading	<u>Difference</u>	Average Pumping Rate (gpm)
1/7/2011	122,884,000	122,524,000	360,000	36
1/14/2011	123,145,000	122,884,000	261,000	26
1/21/2011	123,534,000	123,145,000	389,000	39
1/28/2011	123,911,000	123,534,000	377,000	37
2/4/2011	124,279,000	123,911,000	368,000	37
2/11/2011	124,639,000	124,279,000	360,000	36
2/18/2011	124,995,000	124,639,000	356,000	35
2/25/2011	125,336,000	124,995,000	341,000	34
3/4/2011	125,687,000	125,336,000	351,000	35
3/11/2011	125,909,000	125,687,000	222,000	22
3/18/2011	126,274,000	125,909,000	365,000	36
3/25/2011	126,656,000	126,274,000	382,000	38
4/1/2011	127,043,000	126,656,000	387,000	38
4/8/2011	127,410,000	127,043,000	367,000	36
4/15/2011	127,792,000	127,410,000	382,000	38
4 /22/2011	128,171,000	127,792,000	379,000	38
4/29/2011	128,527,000	128,171,000	356,000	35
5/6/2011	128,910,000	128,527,000	383,000	38
5/13/2011	129,285,000	128,910,000	375,000	37
5/20/2011	129,462,000	129,285,000	177,000	18
5/27/2011	129,467,000	129,462,000	5,000	0
6/3/2011	129,608,000	129,467,000	141,000	14
6/10/2011	130,002,000	129,608,000	394,000	39
6/17/2011	130,405,000	130,002,000	403,000	40
6/24/2011	130,801,000	130,405,000	396,000	39
7/1/2011	131,200,000	130,801,000	399,000	40
7/8/2011	NA	131,200,000	NA	NA
7/15/2011	NA	NA	NA	NA
7/22/2011	NA	NA	NA	NA
7/29/2011	132,744,000	NA	NA	NA
8/5/2011	133,121,000	132,744,000	377,000	37
8/12/2011	133,488,000	133,121,000	367,000	36
8/19/2011	133,845,000	133,488,000	357,000	35
8/26/2011	134,217,000	133,845,000	372,000	37
9/2/2011	134,565,000	134,217,000	348,000	35
9/9/2011	134,931,000	134,565,000	366,000	36
9/16/2011	135,310,000	134,931,000	379,000	38
9/23/2011	135,687,000	135,310,000	377,000	37
9/30/2011	136,027,000	135,687,000	340,000	34
10/7/2011	136,392,000	136,027,000	365,000	36
10/14/2011	136,758,000	136,392,000	366,000	36
10/21/2011	137,120,000	136,758,000	362,000	36
10/28/2011	137,483,000	137,120,000	363,000	36
11/4/2011	137,841,000	137,483,000	358,000	36
11/11/2011	138,205,000	137,841,000	364,000	36
11/18/2011	138,565,000	138,205,000	360,000	36
11/25/2011	138,913,000	138,565,000	348,000	35
12/2/2011	139,270,000	138,913,000	357,000	35
12/9/2011	139,618,000	139,270,000	348,000	35
12/16/2011	139,968,000	139,618,000	350,000	35
12/23/2011	140,291,000	139,968,000	323,000	32
12/30/2011	140,606,000	140,291,000	315,000	31

<u>Date</u>	Current Reading(1)	Previous Reading	Difference	Average Pumping Rate (gpm)
1/6/2012	140,937,000	140,606,000	331,000	33
1/13/2012	141,206,000	140,937,000	269,000	27
1/20/2012	141,509,000	141,206,000	303,000	30
1/27/2012	141,694,000	141,509,000	185,000	18
2/3/2012	142,064,000	141,694,000	370,000	37
2/10/2012	142,415,000	142,064,000	351,000	35
2/17/2012	142,762,000	142,415,000	347,000	34
2/24/2012	143,103,000	142,762,000	341,000	34
3/2/2012	143,444,000	143,103,000	341,000	34
3/9/2012	143,782,000	143,444,000	338,000	34
3/16/2012	144,114,000	143,782,000	332,000	33
3/23/2012	144,438,000	144,114,000	324,000	32
3/30/2012	144,767,000	144,438,000	329,000	33
4/6/2012	145,111,000	144,767,000	344,000	34
4/13/2012	145,452,000	145,111,000	341,000	34
4/20/2012	145,621,000	145,452,000	169,000	17
4/27/2012	145,933,000	145,621,000	312,000	31
5/4/2012	146,269,000	145,933,000	336,000	33
5/11/2012	146,584,000	146,269,000	315,000	31
5/18/2012	146,926,000	146,584,000	342,000	34
5/25/2012	147,278,000	146,926,000	352,000	35
6/1/2012	147,631,000	147,278,000	353,000	35
6/8/2012	147,981,000	147,631,000	350,000	35
6/15/2012	148,328,000	147,981,000	347,000	34
6/22/2012	148,678,000	148,328,000	350,000	35
6/29/2012	149,028,000	148,678,000	350,000	35
7/6/2012	149,380,000	149,028,000	352,000	35
7/13/2012	149,735,000	149,380,000	355,000	35
7/20/2012	150,083,000	149,735,000	348,000	35
7/27/2012	150,433,000	150,083,000	350,000	35
8/3/2012	150,781,000	150,433,000	348,000	35
8/10/2012	151,132,000	150,781,000	351,000	35
8/17/2012	151,480,000	151,132,000	348,000	35
	151,828,000	151,480,000	348,000	35
8/24/2012		151,828,000	336,000	33
8/31/2012	152,164,000 152,502,000	152,164,000	338,000	34
9/7/2012			343,000	34
9/14/2012	152,845,000	152,502,000		34
9/21/2012	153,191,000	152,845,000	346,000	33
9/28/2012	153,521,000	153,191,000	330,000	34
10/5/2012	153,864,000	153,521,000	343,000	28
10/12/2012	154,142,000	153,864,000	278,000	32
10/19/2012	154,469,000	154,142,000	327,000	
10/26/2012	154,812,000	154,469,000	343,000	34 33
11/2/2012	155,142,000	154,812,000	330,000	
11/9/2012	155,462,000	155,142,000	320,000	32
11/16/2012	155,766,000	155,462,000	304,000	30 30
11/23/2012	156,054,000	155,766,000	288,000	29
11/30/2012	156,346,000	156,054,000	292,000	29
12/6/2012	156,588,000	156,346,000	242,000	24
12/13/2012	156,883,000	156,588,000	295,000	29
12/22/2012	157,255,000	156,883,000	372,000	29
12/27/2012	157,465,000	157,255,000	210,000	29

<u>Date</u>	Current Reading ⁽¹⁾	Previous Reading	<u>Difference</u>	Average Pumping Rate (gpm)
1/3/2013	157,747,000	157,465,000	282,000	28
1/10/2013	158,057,000	157,747,000	310,000	31
1/17/2013	158,345,000	158,057,000	288,000	29
1/24/2013	158,640,000	158,345,000	295,000	29
1/31/2013	158,942,000	158,640,000	302,000	30
2/7/2013	159,274,000	158,942,000	332,000	33
2/14/2013	159,584,000	159,274,000	310,000	33 31
2/21/2013	159,919,000	159,584,000	335,000	33
2/28/2013	160,251,000			33
3/7/2013	160,432,000	159,919,000	332,000	18
3/14/2013	160,658,000	160,251,000 160,432,000	181,000 226,000	22
3/21/2013	160,967,000	160,658,000	309,000	31
3/28/2013	161,275,000	160,967,000	308,000	31
4/4/2013	161,562,000	161,275,000	287,000	28
4/11/2013	161,829,000	161,562,000	267,000	26
4/18/2013	162,117,000	161,829,000	288,000	29
4/25/2013	162,405,000		288,000	29
5/2/2013	162,585,000	162,117,000 162,405,000		18
5/9/2013	162,822,000	162,585,000	180,000	
5/16/2013	163,117,000	162,822,000	237,000 295,000	2 4 29
5/23/2013	163,424,000			30
5/30/2013	163,737,000	163,117,000 163,424,000	307,000	31
6/6/2013	164,047,000		313,000	
6/13/2013	164,350,000	163,737,000 164,047,000	310,000	31 30
6/20/2013	164,654,000	164,350,000	303,000 304,000	30
6/27/2013	164,959,000	164,654,000	305,000	30
7/4/2013	165,259,000	164,959,000	300,000	30
7/11/2013	165,554,000	165,259,000	295,000	29
7/18/2013	165,860,000	165,554,000	306,000	30
7/25/2013	166,166,000	165,860,000	306,000	30
8/1/2013	166,475,000	166,166,000	309,000	31
8/8/2013	166,611,000	166,475,000	136,000	13
8/15/2013	166,790,000	166,611,000	179,000	18
8/22/2013	167,095,000	166,790,000	305,000	30
8/29/2013	167,402,000	167,095,000	307,000	30
9/5/2013	167,617,000	167,402,000	215,000	21
9/12/2013	167,896,000	167,617,000	279,000	28
9/19/2013	168,207,000	167,896,000	311,000	31
9/26/2013	168,517,000	168,207,000	310,000	31
10/3/2013	168,828,000	168,517,000	311,000	31
10/10/2013	169,125,000	168,828,000	297,000	29
10/17/2013	169,434,000	169,125,000	309,000	31
10/24/2013	169,743,000	169,434,000	309,000	31
10/31/2013	170,051,000	169,743,000	308,000	31
11/7/2013	170,346,000	170,051,000	295,000	29
11/14/2013	170,647,000	170,346,000	301,000	30
11/21/2013	170,963,000	170,647,000	316,000	31
11/28/2013	171,225,000	170,963,000	262,000	26
12/5/2013	171,527,000	171,225,000	302,000	30
12/12/2013	171,830,000	171,527,000	303,000	30
12/19/2013	172,136,000	171,830,000	306,000	30
12/26/2013	172,434,000	172,136,000	298,000	30

D-4-	Current Reading ⁽¹⁾	Previous Reading	Difforonco	Average Pumping Rate (gpm) ^{(;}
<u>Date</u>			Difference 299,000	30
1/2/2014	172,733,000	172,434,000 172,733,000	300,000	30
1/9/2014	173,033,000		303,000	30
1/16/2014	173,336,000	173,033,000		30
1/23/2014	173,639,000	173,336,000	303,000	31
1/30/2014	173,947,000	173,639,000	308,000	30
2/6/2014	174,252,000	173,947,000	305,000	30
2/13/2014	174,554,000	174,252,000	302,000	30
2/20/2014	174,859,000	174,554,000	305,000	30
2/27/2014	175,161,000	174,859,000	302,000	30
3/6/2014	175,467,000	175,161,000	306,000	30
3/13/2014	175,771,000	175,467,000	304,000	30
3/20/2014	176,074,000	175,771,000	303,000	30
3/27/2014	176,381,000	176,074,000	307,000	
4/3/2014	176,686,000	176,381,000	305,000	30
4/10/2014	176,988,000	176,686,000	302,000	30
4/17/2014	177,295,000	176,988,000	307,000	30
4/24/2014	177,604,000	177,295,000	309,000	31
5/1/2014	177,810,000	177,604,000	206,000	20
5/8/2014	177,934,000	177,810,000	124,000	12
5/15/2014	178,232,000	177,934,000	298,000	30
5/22/2014	178,543,000	178,232,000	311,000	31
5/29/2014	178,883,000	178,543,000	340,000	34
6/5/2014	179,217,000	178,883,000	334,000	33
6/12/2014	179,552,000	179,217,000	335,000	33
6/19/2014	179,890,000	179,552,000	338,000	34
6/26/2014	180,225,000	179,890,000	335,000	33
7/3/2014	180,563,000	180,225,000	338,000	34
7/10/2014	180,902,000	180,563,000	339,000	34
7/17/2014	181,238,000	180,902,000	336,000	33
7/24/2014	181,565,000	181,238,000	327,000	32
7/31/2014	181,908,000	181,565,000	343,000	34
8/7/2014	182,254,000	181,908,000	346,000	34
8/14/2014	182,592,000	182,254,000	338,000	34
8/21/2014	182,934,000	182,592,000	342,000	34
8/28/2014	183,275,000	182,934,000	341,000	34
9/4/2014	184,600,000	183,275,000	333,000	3 33
9/11/2014	184,930,000	184,600,000	330,000	33
9/18/2014	185,238,000	184,930,000	308,000	31
9/25/2014	185,574,000	185,238,000	336,000	33
10/2/2014	185,912,000	185,574,000	338,000	34
10/9/2014	186,248,000	185,912,000	336,000	33
10/16/2014	186,587,000	186,248,000	339,000	34
10/23/2014	186,930,000	186,587,000	343,000	34
10/30/2014	187,270,000	186,930,000	340,000	34
11/6/2014	187,616,000	187,270,000	346,000	34
11/13/2014	187,961,000	187,616,000	345,000	34
11/20/2014	188,305,000	187,961,000	344,000	34
11/27/2014	188,651,000	188,305,000	346,000	34
12/4/2014	188,995,000	188,651,000	344,000	34
12/11/2014	189,337,000	188,995,000	342,000	34
12/18/2014	189,684,000	189,337,000	347,000	34
12/25/2014	190,031,000	189,684,000	347,000	34
	• •	•		

Dete	Current Reading ⁽¹⁾	Desvious Boodins	Difference	Average Pumping Rate (gpm) ^{(;}
<u>Date</u>		Previous Reading	<u>Difference</u>	
1/1/2015	190,380,000	190,031,000	349,000	35
1/8/2015	190,723,000	190,380,000	343,000	34
1/15/2015	191,066,000	190,723,000	343,000	34
1/22/2015	191,408,000	191,066,000	342,000	34
1/29/2015	191,750,000	191,408,000	342,000	34
2/5/2015	192,094,000	191,750,000	344,000	34
2/12/2015	192,437,000	192,094,000	343,000	34
2/19/2015	192,782,000	192,437,000	345,000	34
2/26/2015	193,113,000	192,782,000	331,000	33
3/5/2015	193,416,000	193,113,000	303,000	30
3/12/2015	193,740,000	193,416,000	324,000	32
3/19/2015	194,084,000	193,740,000	344,000	34
3/26/2015	194,431,000	194,084,000	347,000	34
4/2/2015	194,780,000	194,431,000	349,000	35
4/9/2015	195,125,000	194,780,000	345,000	34
4/16/2015	195,472,000	195,125,000	347,000	34
4/23/2015	195,817,000	195,472,000	345,000	34
4/30/2015	196,089,000	195,817,000	272,000	27
5/7/2015	196,208,000	196,089,000	119,000	12
5/14/2015	196,556,000	196,208,000	348,000	35
5/21/2015	196,773,000	196,556,000	217,000	22
5/28/2015	196,868,000	196,773,000	95,000	9
6/4/2015	197,218,000	196,868,000	350,000	35
6/11/2015	197,569,000	197,218,000	351,000	35
6/18/2015	197,918,000	197,569,000	349,000	35
6/25/2015	198,265,000	197,918,000	347,000	34
7/2/2015	198,612,000	198,265,000	347,000	34
7/9/2015	198,962,000	198,612,000	350,000	35
7/16/2015	199,305,000	198,962,000	343,000	34
7/23/2015	199,649,000	199,305,000	344,000	34
7/30/2015	199,998,000	199,649,000	349,000	35
8/6/2015	200,357,000	199,998,000	359,000	36
8/13/2015	200,721,000	200,357,000	364,000	36
8/20/2015	201,084,000	200,721,000	363,000	36
8/27/2015	201,445,000	201,084,000	361,000	36
9/3/2015	201,801,000	201,445,000	356,000	35
9/10/2015	202,162,000	201,801,000	361,000	36
9/17/2015	202,523,000	202,162,000	361,000	36
9/24/2015	202,888,000	202,523,000	365,000	36
10/1/2015	203,250,000	202,888,000	362,000	36
10/8/2015	203,618,000	203,250,000		4 37
10/15/2015	203,960,000	203,618,000	342,000	4 34
10/22/2015	204,317,000	203,960,000	357,000	35
10/29/2015	204,659,000	204,317,000	342,000	34
11/5/2015	205,021,000	204,659,000	362,000	36
11/12/2015	205,382,000	205,021,000	361,000	36
11/19/2015	205,725,000	205,382,000	343,000	34
11/26/2015	206,082,000	205,725,000	3 4 3,000 357,000	35
12/3/2015	206,438,000	206,082,000	356,000	35
12/10/2015	206,794,000	206,438,000	356,000	35 35
12/17/2015	205,794,000	206,794,000	355,000 355,000	
12/17/2015	207,149,000			35 33
		207,149,000	324,000	32
12/31/2015	207,823,000	207,473,000	350,000	35

Data	Current Reading ⁽¹⁾	Daniero Dandina	Difference	Average Dumping Date (com)(
<u>Date</u>		Previous Reading	<u>Difference</u>	Average Pumping Rate (gpm)
1/7/2016	208,175,000	207,823,000	352,000	35
1/14/2016	208,524,000	208,175,000	349,000	35 25
1/21/2016	208,879,000	208,524,000	355,000	35
1/28/2016	209,235,000	208,879,000	356,000	35
2/4/2016	209,574,000	209,235,000	339,000	34
2/11/2016	209,931,000	209,574,000	357,000	35
2/18/2016	210,288,000	209,931,000	357,000	35
2/25/2016	210,640,000	210,288,000	352,000	35
3/3/2016	210,995,000	210,640,000	355,000	35
3/10/2016	211,353,000	210,995,000	358,000	36
3/17/2016	211,704,000	211,353,000	351,000	35
3/24/2016	212,061,000	211,704,000	357,000	35
3/31/2016	212,417,000	212,061,000	356,000	35
4/7/2016	212,757,000	212,417,000	340,000	34
4/14/2016	213,108,000	212,757,000	351,000	35
4/21/2016	213,415,000	213,108,000	307,000	30
4/28/2016	213,823,000	213,415,000	408,000	40
5/5/2016	214,182,000	213,823,000	359,000	36
5/12/2016	214,541,000	214,182,000	359,000	36
5/19/2016	214,764,000	214,541,000	223,000	22
5/26/2016	214,942,000	214,764,000	178,000	18
6/2/2016	215,284,000	214,942,000	342,000	34
6/9/2016	215,630,000	215,284,000	346,000	34
6/16/2016	215,978,000	215,630,000	348,000	35
6/23/2016	216,316,000	215,978,000	338,000	34
6/30/2016	216,636,000	216,316,000	320,000	32
7/7/2016	216,973,000	216,636,000	337,000	33
7/14/2016	217,311,000	216,973,000	338,000	34
7/21/2016	217,640,000	217,311,000	329,000	33
7/28/2016	217,974,000	217,640,000	334,000	33
8/4/2016	218,308,000	217,974,000	334,000	33
8/11/2016	218,641,000	218,308,000	333,000	33
8/18/2016	218,962,000	218,641,000	321,000	32
8/25/2016	219,293,000	218,962,000	331,000	33
9/1/2016	219,621,000	219,293,000	328,000	33
9/8/2016	219,945,000	219,621,000	324,000	32
9/15/2016	220,275,000	219,945,000	330,000	33
9/22/2016	220,608,000	220,275,000	333,000	33
9/29/2016	220,940,000	220,608,000	332,000	33
10/6/2016	221,273,000	220,940,000	333,000	33
10/13/2016	221,606,000	221,273,000	333,000	33
10/20/2016	221,935,000	221,606,000	329,000	33
10/27/2016	222,256,000	221,935,000	321,000	32
11/3/2016	222,582,000	222,256,000	326,000	32
11/10/2016	222,911,000	222,582,000	329,000	33
11/17/2016	223,241,000	222,911,000	330,000	33
11/24/2016	223,571,000	223,241,000	330,000	33
12/1/2016	223,898,000	223,571,000	327,000	32
12/8/2016	224,228,000	223,898,000	330,000	33
12/15/2016	224,556,000	224,228,000	328,000	33
12/22/2016	224,871,000	224,556,000	315,000	31
12/29/2016	225,213,000	224,871,000	342,000	34
1/5/2017	225,579,000	225,213,000	366,000	36
1/12/2017	225,946,000	225,579,000	367,000	36
1/19/2017	226,312,000	225,946,000	366,000	36
1/26/2017	226,678,000	226,312,000	366,000	36

<u>Date</u>	Current Reading ⁽¹⁾	Previous Reading	Difference	Average Pumping Rate (gpm)
2/2/2017	227,041,000	226,678,000	363,000	36
2/9/2017	227,395,000	227,041,000	354,000	35
2/16/2017	227,751,000	227,395,000	356,000	35
2/23/2017	228,114,000	227,751,000	363,000	36
3/2/2017	228,479,000	228,114,000	365,000	36
3/9/2017	228,851,000	228,479,000	372,000	37
3/16/2017	229,221,000	228,851,000	370,000	37
3/23/2017	229,586,000	229,221,000	365,000	36
3/30/2017	229,954,000	229,586,000	368,000	37
4/6/2017	230,317,000	229,954,000	363,000	36
4/13/2017	230,683,000	230,317,000	366,000	36
4/20/2017	231,047,000	230,683,000	364,000	36
4/27/2017	231,416,000	231,047,000	369,000	37
5/4/2017	231,779,000	231,416,000	363,000	36
5/11/2017	232,145,000	231,779,000	366,000	36
5/18/2017	232,316,000	232,145,000	171,000	17
5/25/2017	232,460,000	232,316,000	144,000	14
6/1/2017	232,767,000	232,460,000	307,000	30
6/8/2017	233,158,000	232,767,000	391,000	39
6/15/2017	233,549,000	233,158,000	391,000	39
6/22/2017	233,942,000	233,549,000	393,000	39
6/29/2017	234,334,000	233,942,000	392,000	39
7/6/2017	234,727,000	234,334,000	393,000	39
7/13/2017	235,111,000	234,727,000	384,000	38
7/20/2017	235,494,000	235,111,000	383,000	38
7/27/2017	235,877,000	235,494,000	383,000	38
8/3/2017	236,262,000	235,877,000	385,000	38
8/10/2017	236,648,000	236,262,000	386,000	38
8/17/2017	237,040,000	236,648,000	392,000	39
8/24/2017	237,420,000	237,040,000	380,000	38
8/31/2017	237,746,000	237,420,000	326,000	32
9/7/2017	238,124,000	237,746,000	378,000	38
9/14/2017	238,502,000	238,124,000	378,000	38
9/21/2017	238,879,000	238,502,000	377,000	37
9/28/2017	239,256,000	238,879,000	377,000	37
10/5/2017	239,632,000	239,256,000	376,000	37
10/12/2017	240,006,000	239,632,000	374,000	37
10/19/2017	240,383,000	240,006,000	377,000	37
10/26/2017	240,770,000	240,383,000	387,000	38
11/2/2017	241,153,000	240,770,000	383,000	38
11/9/2017	241,424,000	241,153,000	271,000	27
11/16/2017	241,768,000	241,424,000	344,000	34
11/23/2017	242,111,000	241,768,000	343,000	34
11/30/2017	242,457,000	242,111,000	346,000	34
12/7/2017	242,803,000	242,457,000	346,000	34
12/14/2017	243,152,000	242,803,000	349,000	35
12/21/2017	243,503,000	243,152,000	351,000	35
12/28/2017	243,849,000	243,503,000	346,000	34
1/4/2018	244,172,000	243,849,000	323,000	32
1/11/2018	244,521,000	244,172,000	349,000	35

<u>Date</u>	Current Reading ⁽¹⁾	Previous Reading	Difference	Average Pumping Rate (gpm)
1/18/2018	244,890,000	244,521,000	369,000	37
1/25/2018	245,246,000	244,890,000	356,000	35
2/1/2018	245,595,000	245,246,000	349,000	35
2/8/2018	245,958,000	245,595,000	363,000	36
2/15/2018	246,308,000	245,958,000	350,000	35
2/22/2018	246,656,000	246,308,000	348,000	35
3/1/2018	247,003,000	246,656,000	347,000	34
3/8/2018	247,376,000	247,003,000	373,000	37
3/15/2018	247,726,000	247,376,000	350,000	35
3/22/2018	248,092,000	247,726,000	366,000	36
3/29/2018	248,443,000	248,092,000	351,000	35
4/5/2018	248,792,000	248,443,000	349,000	35
4/12/2018	249,148,000	248,792,000	356,000	35
4/19/2018	249,502,000	249,148,000	354,000	35
4/26/2018	249,860,000	249,502,000	358,000	36
5/5/2018	250,321,000	249,860,000	461,000	46
5/12/2018	250,678,000	250,321,000	357,000	35
5/19/2018	250,806,000	250,678,000	128,000	13
5/26/2018	251,049,000	250,806,000	243,000	24
6/2/2018	251,371,000	251,049,000	322,000	32
6/9/2018	251,735,000	251,371,000	364,000	36
6/16/2018	252,095,000	251,735,000	360,000	36
6/23/2018	252,455,000	252,095,000	360,000	36
6/30/2018	252,813,000	252,455,000	358,000	36
7/7/2018	253,169,000	252,813,000	356,000	35
7/14/2018	253,528,000	253,169,000	359,000	36
7/21/2018	253,849,000	253,528,000	321,000	32
7/28/2018	254,010,000	253,849,000	161,000	16
8/4/2018	254,375,000	254,010,000	365,000	36
8/11/2018	254,717,000	254,375,000	342,000	34
8/18/2018	255,060,000	254,717,000	343,000	34
8/25/2018	255,419,000	255,060,000	359,000	36
9/1/2018	255,771,000	255,419,000	352,000	35
9/8/2018	256,131,000	255,771,000	360,000	36
9/15/2018	256,447,000	256,131,000	316,000	31
9/22/2018	256,700,000	256,447,000	253,000	25
9/29/2018	257,037,000	256,700,000	337,000	33

Notes

- (1) Volumes are based upon instantaneous readings
- (2) Refer to "Summary of Groundwater and ISVE Downtime" for an explanation of reduced pumping rate
- (3) Estimated value based on PLC fault on 9/1/14
- (4) Estimated value based on data loss from Duke energy fuse malfunction on 10/14/15
- NA not available

Attachment 2 Summary of Treatment System Analytical Results	

GHD | Linnear-22-003250--ATT

		July 2	018				August 2018	1			Septem	ber 2018	
	Week 1	Week 2	Week 3	Week 4	Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4
150 Influent to Treatment Facility								_					
Sample ID		PW-1078	•										
Sample Date		7/11/18											
General Inorganics (mg/L)													
Alkalmity, Total (As CaCO3)	_	380	_	_				_			_		
Hardness	_	480											
Total Dissolved Solids (TDS)		1300	_	_		_	_						_
Total Suspended Solids (TSS)	-	ND (4.0)	-	-		-	-		-		-	-	-
Metals (mg/L)													
Arsenic	-	ND (0 010)			_		_				••	_	
Beryllium	_		_			_	_					_	••
Calcrum	_	120			_		-			_	••	_	
Copper		ND (0.021)				••	_	_	_	_		_	••
Iron		0.93					_			_		-	
Lead		-	-	_		_	_	_		-			
Magnesium		41	-	-			-						
Mercury		ND (0 00020)	_	-					-			-	-
Nickel	_	ND (0 00020)					-				-	-	-
Selenium				-			-	-	-		-	-	
	-					_	-		-	-	-		
Silver						-	-	-		-	~		
Zinc		ND (0.050)			-	-	-		-	-			
Pesticides and PCBs (ug/L)													
4,4'-DDT					-		-	-		-			
alpha-BHC	-												
beta-BHC	-				-		-		••				
Dieldrin	-	-	-	-									
Endrin	-	-					-					_	-
gamma-BHC (Lindane)	-						-				_		_
Heptachlor		••			-							-	
Aroclor-1016 (PCB-1016)	-		_		_		-		_		••		
Aroclor-1221 (PCB-1221)		••	-				_					-	
Aroclor-1232 (PCB-1232)	-						_	-	_				
Aroclor-1242 (PCB-1242)	_			••	-		_	_		_		_	
Aroclor-1248 (PCB-1248)	_				_		_					_	
Aroclor-1254 (PCB-1254)	-		_				_		_				
Aroclor-1260 (PCB-1260)			_			_	_				_	_	_
Total PCBs	_			_		_	_				_	_	_
4,4'-DDE	_		_	-		_	_		-				
Methoxychlor	_		-		-	-	_		-	-	-	-	
Semi Volatile Organic Compounds (ug/L)													
		ND (0.5)											
2,4-Dichlorophenol	-	ND (9 5)	-	••		-				-			
2,6-Dinitrotoluene	-	ND (9.5)						-	-	-		-	
2-Methylphenol		ND (9.5)			-		-		-	-		-	
4-Methylphenol	-	ND (9.5)			-					-		-	-
Acenaphthene	_	ND (9 5)			-		-	-					-
bis(2-Chloroethyl)ether	-	ND (9.5)	-			-			-				-
bis(2-Ethylhexyl)phthalate	_	ND (9.5)		-					-			-	-
Butyl benzylphthalate	-	ND (9.5)	-				-					-	-
Diethyl phthalate	-	ND (9.5)	-				-			-		-	
Dimethyl phthalate		ND (9 5)	_	_		_	-						_

	Week 1	Week 2	Week 3	Week 4	Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4
DI-n-butylphthalate	-	ND (9 5)	-			_	-		-				
Fluoranthene	_	ND (9.5)				-		-					-
Isophorone	-	ND (9.5)				-	-		-		-		_
Naphthalene		ND (9.5)	-			_	-				_	_	-
N-Nitrosodiphenylamine	-	ND (9.5)	-	-			-					_	
Pentachlorophenol		ND (9.5)	-		-	-	_						
Phenol	-	ND (9.5)	-				-		-		-	-	

	Week 1	Week 2	Week 3	Week 4	Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4
Volatile Organic Compounds (ug/L)							_						
1,1,1-Trichloroethane		ND (5 0)									_		_
1,1,2,2-Tetrachloroethane		ND (5.0)	_	••									
1,1,2-Trichloroethane		ND (5 0)		_		_			-			_	
1,1-Dichloroethene	-	ND (5.0)			••	-	_				_	-	
1,2-Dichlorobenzene	_	ND (5.0)	_			_	_						
1,2-Dichloroethane		32							-	_	-		
1,3-Dichlorobenzene	_	ND (5.0)	••				-		-	-		_	
					_		_	-	_				
1,4-Dichlorobenzene	_	ND (5 0)					_	_				-	
2-Butanone (Methyl Ethyl Ketone)	-	ND (20)											
Acetone	-	ND (20)		••			-	-			-		-
Benzene		ND (5.0)	-			-	-				-		-
Carbon tetrachloride		ND (5.0)				-	-		-		-	-	-
Chlorobenzene		ND (5 0)	-	-		_	-					-	
Chloroform (Trichloromethane)		ND (5 0)	-			-	-		-	-	-	-	
Ethylbenzene	-	ND (5.0)	-	••		-	_		-	-		-	
Methylene chloride	-	ND (5.0)				-	-		-	-		-	
Styrene		ND (5 0)					-					-	
Tetrachloroethene		ND (5 0)					-			-			
Toluene		ND (5 0)					-			-		-	
trans-1,2-Dichloroethene		ND (2 5)	-	-		-	-		_		-		-
Trichloroethene	↔	ND (5 0)		_		_			-			_	
Vinyl chloride		ND (5.0)		-					_				
Xylene (total)		ND (5 0)								_	_		
<u>150 Clanfier Effluent</u> Sample ID Sample Date													
Metals (mg/L)													
Iron	-	_	-	-	••	_		_	-		_	-	
Calcium	_										_		
Calcium						_	_				_	-	-
General Inorganics (mg/L)													
	-												
Alkalinity, Total (As CaCO3)		-	-	-	-		-				-	-	-
Hardness	-			-		-	-	-	-		-		_
<u>150 Sand Filter Effluent</u> Sample ID Sample Date													
Metals (mg/L)													
Iron		_						_					
Zinc	_	_		-		_			_		-		
Line						-	_		_		-	••	-
<u>150 Air Stnpper Effluent</u> Sample ID		PW-1080											
Sample Date		7/11/18											
Sample Date		//11/10											
Volatile Organic Compounts (ug/L)													
1,1,1-Trichloroethane	-	ND (5.0)	_	_		_		-			_		
1,1,2,2-Tetrachloroethane		ND (5 0)		_					_		_		_
1,1,2-Trichloroethane		ND (5 0)					-						_
1,1-Dichloroethene		ND (5.0)				_			-		_		-
1,2-Dichlorobenzene		ND (5.0)		_		-		-	_		_		-
-j- siemoroschiene		140 (3 0)		-			-		_		_		-

	Week 1	Week 2	Week 3	Week 4	Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4
1,2-Dichloroethane	_	ND (5.0)				-			_				_
1,3-Dichlorobenzene	-	ND (5.0)		-		_		_	-		-		
1,4-Dichlorobenzene	-	ND (5.0)		-		-	-		_		-		
2-Butanone (Methyl Ethyl Ketone)	-	ND (20)					_				-		
Acetone		ND (20)				-				••		-	
Benzene	-	ND (5 0)								-		-	
Carbon tetrachloride	-	ND (5.0)	-			-	-						
Chlorobenzene	-	ND (5.0)	-										
Chloroform (Trichloromethane)	-	ND (5.0)			-		-				••		
Ethylbenzene	-	ND (5.0)								-		-	
Methylene chloride		ND (5.0)					-	-			_	-	-
Styrene	-	ND (5.0)	-						_		-		
Tetrachloroethene	-	ND (5 0)				_	-		_		-	-	-
Toluene		ND (5.0)		_		_			_		-	-	-
trans-1,2-Dichloroethene	_	ND (2.5)			-	-	_		-	-	-	_	
Trichloroethene	_	ND (5 0)	-		_	-	_		-	_	-	-	
Vinyl chloride		ND (5.0)					-			_	-	-	
Xylene (total)		ND (5.0)	••		-		-			-	••	-	

Week 1 Week 2 Week 3 Week 4 Week 2 Week 3 Week 4 Week 5 W	_	Week 3	Week 4
Sample Date Metals (mg/L) Zinc	-		-
Metals (mg/L) Zinc <	-		_
Zinc	-		-
Zinc Volatile Organic Compounds (ug/L) <	-		-
1,1,1-Trichloroethane	-		
1,1,1-Trichloroethane	-		
1,1,2,2-Tetrachloroethane	-		_
		_	
1,1,2-Trichloroethane			
1,1-Dichloroethene			
1,2-Dichlorobenzene		_	
1,2-Dichloroethane			
1,3-Dìchlorobenzene –			
1,4-Dichlorobenzene		_	
2-Butanone (Methyl Ethyl Ketone) –			
Acetone			_
Benzene		_	
Carbon tetrachloride			
Chlorobenzene			
Chloroform (Trichloromethane)	_		
Ethylbenzene	••	_	
Methylene chloride		_	
Styrene			
Tetrachloroethene	-		
Toluene			
trans-1,2-Dichloroethene		-	_
Trichloroethene	_		_
Vinyl chloride		-	
Xylene (total)	-	-	
150 Air Stripper Influent			
Sample ID PW-1079			
Sample Date 7/11/18			
Volatile Organic Compounds (ug/L)			
1,1,1-Trichloroethane - ND (5.0)	_		
1,1,2,2-Tetrachloroethane ND (5.0)			_
1,1,2-Trichloroethane ND (5.0)		_	_
1,1-Dichloroethene – ND (5.0)			
1,2-Dichlorobenzene ND (5 0)			
1,2-Dichloroethane – 91 –			
1,3-Dıchlorobenzene ND (5 0)			
1,4-Dichlorobenzene ND (5.0)		_	
2-Butanone (Methyl Ethyl Ketone) ND (20)			
Acetone ND (20)			
Benzene ND (5.0)			_
Carbon tetrachloride – ND (5.0)	_		_
Chlorobenzene – ND (5.0)			
Chloroform (Trichloromethane) - ND (5.0)	_		_
Ethylbenzene ND (5.0)		_	
Methylene chloride ND (5.0)		_	
Styrene - ND (5.0)		_	
Tetrachloroethene ND (5.0)	_		

	Week 1	Week 2	Week 3	Week 4	Week 1	Week 2	Week 3	Week 4	Week 5	Week_1	Week 2	Week 3	Week 4
Toluene	-	ND (5.0)	-			-			-		-	••	-
trans-1,2-Dichloroethene	-	ND (2.5)		-		-					-		-
Trichloroethene	-	ND (5.0)		••									
Vinyl chloride	-	ND (5.0)					_				-	-	-
Xylene (total)	-	ND (5.0)	-			-	-		-		-		_

	Week 1	Week 2	Week 3	Week 4	Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4
150 Between Carbon Beds		- WEEK Z	Week 3	WEEK 4	AACEK T	WEEK 2	Week 3	Week 4	Week 5	WEEK 1	WEEK Z	Week 3	Week 4
Sample ID													
Sample Date													
Sample Date													
Volatile Organic Compounds (ug/L)													
1,1,1-Trichloroethane				_		_					_		_
1,1,2,2-Tetrachloroethane	_	_		_		_			-		_		_
1,1,2-Trichloroethane	_			_			_		_		_		_
1,1-Dichloroethene	-								-		_	_	_
1,2-Dichlorobenzene			_										
1,2-Dichloroethane			-								-		
1,3-Dichlorobenzene	_		_						-	-		-	
1,4-Dichlorobenzene	_					-	-	-	_	-			
2-Butanone (Methyl Ethyl Ketone)	-				-		-	-				-	
Acetone	-	_		-		_			-				-
Benzene	-	_	-				-	-	-		-	-	
Carbon tetrachloride	_		-	-			_					-	
Chlorobenzene	_			-			-		-		-		
Chloroform (Trichloromethane)	-		-		-	_	-			-	-	-	
Ethylbenzene					-		-			-	-	-	
Methylene chloride					-		-		-	-			
Styrene	-				-			-				-	
Tetrachloroethene	-		••		-		-	-		-		-	
Toluene			••		_						•	-	
trans-1,2-Dichloroethene	-	_	-						_				-
Trichloroethene	-	-	-	-			-		-		_	-	-
Vmyl chloride	-	-		-			-				_	-	-
Xylene (total)	-		-	-	••		-				_	-	
asa Camaldan Filman													
<u>150 Cartridge Filter</u> Sample ID													
Sample Date													
Sample Date													
Metals (mg/L)													
Zinc			_			_		_	_				-
Line													
300 Influent to Treatment Facility													
Sample ID													
Sample Date													
General Inorganics (mg/L)													
Alkalinity, Total (As CaCO3)	-		-			-							
Hardness		-				-					-		-
Total Dissolved Solids (TDS)	_	-				-	-		-		-	-	
Total Suspended Solids (TSS)	-			-			-				-	-	-
Fluoride			-		-		-		-			-	
рН	-				-		-			_	-	-	
Metals (mg/L)													
Arsenic	-		-		_		-	-	-			_	
Calcium	-			-	-		~	-	_	-		-	
Copper	-				-		~	-		-	••	-	
Iron	_	-		-	-	-	-		-	-	-		
Magnesium	_	_	-	_			-		_				-
Mercury	-	-		-		-	-		-				

	Week 1	Week 2	Week 3	Week 4	Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4
Zınc	-		-	-		-			-	••	-		-
Samuel Carrie Carrie Carrie Carrie (1)													
Semi Volatile Organic Compounds (ug/L)													
2,4-Dichlorophenol	-	-		-		-		-	-		-		-
2,6-Dinitrotoluene	-		-			-	-				-		-
2-Methylphenol	-	-			-	-	-		-		-	-	-
4-Methylphenol				-		-				-			-
Acenaphthene						-			-	-	_	_	
bis(2-Chloroethyl)ether			-		_			••		_		_	
bis(2-Ethylhexyl)phthalate	-				-		-			••			
Butyl benzylphthalate	-						-	-					
Diethyl phthalate	-					••				-			
Dimethyl phthalate		-						-			-		
Dı-n-butylphthalate		-	-	-		-			-	-	-		-
Fluoranthene	-	-	-			-	-				_	-	-
Isophorone		-	-	-			-				_	-	-
Naphthalene	-		-			-			-		-	-	
N-Nitrosodiphenylamine						-	-		-	-	-		
Pentachlorophenol	-				-		-		-	-		-	
Phenol	-				-		-		-			-	-

	Week 1	Week 2	Week 3	Week 4	Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4
Volatile Organic Compounds (ug/L)			_										
1,1,1-Trichloroethane	-	_		-		-			-				_
1,1,2,2-Tetrachloroethane	_	_	-	-		-	_		_		_	_	
1,1,2-Trichloroethane	_			_		_	-		_		_	_	_
1,1-Dichloroethene	_					-	_		-	-	-	_	
1,2-Dichlorobenzene			-		-	-				_			
1,2-Dichloroethane			-	-	_	_			-	_			
1,3-Dichlorobenzene	_								_			-	••
1,4-Dichlorobenzene	-			_	-		_		-			_	-
2-Butanone (Methyl Ethyl Ketone)					-			_					
Acetone							-				-		
Benzene			••			-			-		-		_
Carbon tetrachloride	-	-		-		-						-	-
Chlorobenzene	_					_	-		-		-		-
Chloroform (Trichloromethane)			_								-		
Ethylbenzene	-		_			-			-	-	_	-	
Methylene chloride	-								_	-		-	
Styrene			-		_		-		-	-		_	
Tetrachloroethene					-		-	_		-	••		
Toluene			••		-		•-	-		-		-	
trans-1,2-Dichloroethene	-	-	-	-		-	-				_		
Trichloroethene	-					-	-					_	
Vinyl chloride						-					_	_	
Xylene (total)	-					-	-		-		-	_	
Pesticides (ug/L)													
4,4'-DDT	-		-		-	-					-		
alpha-BHC	-		-		_	-	-		-		-		
beta-BHC												-	
Dieldrin	-			-	-			-		-			
Endrin	-							-		-		-	
gamma-BHC (lindane)					-			-			_		
Heptachlor	-			-		-	-				-		-
Total PCBs	-		-	-		-			-	-	-	-	
300 Clarifler Effluent													
Sample ID													
Sample Date													
Metals (mg/L)													
Iron	-	••		-				••					-
Calcium	-	_		••		-	-						
Magneslum	-	-		_		-	-		-		-	-	-
Zinc	••			-		-					-		-
General Inorganics (mg/L)													
Alkalınity, Total (As CaCO3)			-			-							
Hardness	-	••	-			-							
300 Sand Filter Effluent													
Sample ID													
Sample Date													
Metals (mg/L)													
Iron	_	-	-	-		-	-						-

	Week 1	Week 2	Week 3	Week 4	Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4
<u>300 Air Stripper Effluent</u> Sample ID Sample Date													
Volatile Organic Compounds (ug/L)													
1,1,1-Trichloroethane	-	_	_	-	-				-		_		-
1,1,2,2-Tetrachloroethane	-	-		-			-			••	-		
1,1,2-Trichloroethane	-		_	_			-		-				-
1,1-Dichloroethene				_			_		-		-	-	-
1,2-Dichlorobenzene			_		_	-	-		-			-	
1,2-Dichloroethane			-		_	_	-		-	-		-	
1,3-Dichlorobenzene	_				-		-			-			
1,4-Dichlorobenzene	_				-	••		-	-		••		
2-Butanone (Methyl Ethyl Ketone)					-		-	-					
Acetone		-		-		-	_			-	_		_
Benzene	-	_	_	-	••		_		-		-	-	_
Carbon tetrachloride	-	-	-								••	-	_
Chlorobenzene	_		-			-	-					-	
Chloroform (Trichloromethane)	_		_							-	_	_	
Ethylbenzene						-					-	-	
Methylene chloride	-				-		-		-		••	-	
Styrene	-							-				-	
Tetrachloroethene			••				-	-		-			
Toluene	-	-			-							-	-
trans-1,2-Dichloroethene			-	-		-		-					
Trichloroethene	-			-			-		-		-		-
Vinyl chloride	-	-	-	-		-	-		-				-
Xylene (total)	-		_	-		-	-		-		-	-	

SUMMARY OF ANALYTICAL RESULTS TREATMENT FACILITY, PRISTINE, INC. SITE, READING, OHIO

	Week 1	Week 2	Week 3	Week 4	Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4
300 Clarifier Influent													
Sample ID													
Sample Date													
##													
Metals (mg/L)													
fron		-			••				-	••			-
300 Flocculator Influent													
Sample ID													
Sample Date													
Sumple Date													
Metals (mg/L)													
Calcium				_		_		_			_	-	_
Iron		-	_	_		-	_	*-			_		_
Zinc			_						_			_	_
General inorganics (mg/L)													
Alkalinity, Total (As CaCO3)	_					-			_	•-		_	_
Hardness	-		_			-			_			_	
Total Dissolved Solids (TDS)	-		-		_				_	_	_	_	••
Total Suspended Solids (TSS)	-				-		_					_	
300 Air Stripper Influent													
Sample ID													
Sample Date													
Volatile Organic Compounds (ug/L)													
1,1,1-Trichloroethane	-	-	-	-		-		-					-
1,1,2,2-Tetrachloroethane		-	-			-	-		-		-		-
1,1,2-Trichloroethane		-	-	-		-			-		-	-	_
1,1-Dichloroethene	-		_	-		-			-		-	-	-
1,2-Dichlorobenzene 1,2-Dichloroethane				••	-	-	-		-	-	-	_	
1,3-Dichlorobenzene					_	-	-	••	-			-	
1,4-Dichlorobenzene	-						_			-		-	
2-Butanone (Methyl Ethyl Ketone)	_				_		_			-		-	
Acetone	_	-				-							
Benzene		_	_			_					-	_	_
Carbon tetrachloride	-		_			_	_		_		_	_	_
Chlorobenzene	_		_	_		_	_				-	_	_
Chloroform (Trichloromethane)			-		_		_		_		-	_	
Ethylbenzene	_				-							_	
Methylene chloride	_											_	
Styrene					_		_					_	
Tetrachloroethene	-				-			_		_		_	
Toluene	_	_			_			_		-		-	
trans-1,2-Dichloroethene		_		_		_	••						-
Trichloroethene	_		_	_			_						
Vinyl chloride	-					_			_		-	_	
Xylene (total)	-		-				_		-			_	
· · ·													

<u>Portable Air Stripper Effluent</u> Sample ID

Sample Date

	Week 1	Week 2	Week 3	Week 4	Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4
Metals (mg/L)													
Calcium	-	-	-	-		-	-		_		-		_
Iron	-	-	-	-					-		-	_	-
Magnesium	-		-								-	-	-
Manganese	-						-		-	-		-	
Zinc	-				-		-		-				
General Inorganics													
Total Dissolved Solids (TDS) (mg/L)	_	••			-	_				_		-	
Total Suspended Solids (TSS) (mg/L)					-								

	Week 1	Week 2	Week 3	Week 4	Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4
450 Effluent from Treatment Facility	*******	*******					***************************************		TT GUIN E		***************************************		
Sample ID	DW-1231	DW-1232	DW-1233	DW-1234	DW-1235	DW-1238	DW-1240	DW-1241	DW-1242	DW-1243	DW-1244	DW-1245	DW-1246
Sample Date	7/5/18	7/11/18	7/18/18	7/26/18	8/2/18	8/9/18	8/16/18	8/23/18	8/30/18	9/5/18	9/12/18	9/19/18	9/25/18
Sample Date	7,5,10	,, 11, 10	7, 10, 10	7,20,10	0,2,20	0, 3, 10	0, 10, 10	0,23,20	0,50,20	3, 3, 20	5, 11, 10	3, 13, 10	3, 23, 20
General Inorganics													
Ammonia (mg/L)	ND (0.20)	-			ND (0.20)		-		_	ND (0.20)			
Chemical Oxygen Demand (COD) (mg/L)	38			-	ND (10)	-	-			ND (10)	-		
Fluoride (mg/L)	0.19		_		0.21	-			-	0 21	-		_
pH, lab	771		71		7.7	-	7.6		-	78		-	7.8
Total Dissolved Solids (TDS) (mg/L)	1400				1400	-	-		-	1300	-		
Total Suspended Solids (TSS) (mg/L)	ND (4.0)		-		ND (4.0)	-	-			ND (4.0)		-	
Metals (mg/L)													
Iron	ND (0 100)		-	••	0 13		-			ND (0 100)		-	
Mercury (ng/L)	4 9	-			12	-		-		10	-		-
Silver	ND(0.0040)	-	-		ND(0.0040)		••			ND(0 0040)	-		-
Zinc	ND(0.050)	ND(0.050)	ND(0 050)	ND(0.050)	0 059	0 051	ND(0 050)	ND(0 050)	0.059	ND(0.050)	ND(0 050)	ND(0.050)	ND(0 050)
Semi Volatile Organic Compounds (ug/L)													
bis(2-Ethylhexyl)phthalate	ND(10)	_			ND(10)					ND(10)			
Di-n-butylphthalate	ND(10)	-	_		ND(10)	_	_			ND(10)	_		_
Di-in bacyipiiciiaiace	140(10)				145(20)					145(10)			_
Volatile Organic Compounds (ug/L)													
1,1,1-Trichloroethane	ND(5.0)		-	-	ND(5.0)			**	-	ND(5 0)			
1,1,2-Trichloroethane	ND(5.0)		-		ND(5.0)			••	-	ND(5 0)	-		-
1,1-Dichloroethene	ND(5.0)		-		ND(5.0)	-	-			ND(5 0)	-	-	
1,2-Dichlorobenzene	ND(5.0)				ND(5.0)	_	-		-	ND(5 0)	-	-	
1,2-Dichloroethane	ND(5.0)		-		ND(5.0)				-	ND(5 0)	-		-
2-Butanone (Methyl Ethyl Ketone)	ND(20)		-		ND(20)		-		-	ND(20)	-		-
Benzene	ND(5.0)	-	-	-	ND(5 0)				-	ND(5 0)	-	-	
Chlorobenzene	ND(5.0)		-	-	ND(5.0)		-		-	ND(5 0)	-		
Chloroform (Trichloromethane)	ND(5.0)		-	-	ND(5.0)		-			ND(5.0)	-	-	
Ethylbenzene	ND(5.0)		-		ND(5 0)				-	ND(5 0)			
Methylene chloride	ND(5.0)		-		ND(5 0)				-	ND(5 0)	-		
Styrene	ND(5.0)		-	••	ND(5.0)		-			ND(5.0)			
Tetrachloroethene	ND(5.0)	-			ND(5.0)			-		ND(5.0)		-	
Toluene	ND(5.0)				ND(5.0)		-			ND(5.0)			
trans-1,2-Dichloroethene	ND(2.5)				ND(2.5)	_			-	ND(2.5)			
Trichloroethene	ND(5.0)		-		ND(5.0)		-			ND(5.0)			
Vinyl chloride	ND(5.0)		-		ND(5.0)					ND(5.0)	-		-
Xylene (total)	ND(5.0)		-		ND(5.0)	•				ND(5.0)	-		_
Pesticides (ug/L)													
4,4'-DDE	_		_		_	_	_		_		_	-	
4,4'-DDT	-		_		_		_				_	_	
alpha-BHC					-							_	
beta-BHC	-				-		-	_	_	-		_	
Dieldrin					_		_	_					
Endrin	_	_			_		_	_				_	
gamma-BHC (Lindane)	-		-			_							
Heptachlor		-	_				_		_	••	_		
Methoxychlor			-				_					_	
Total PCBs		_	-						_		-		

Attachment 3
Summary of Operational & Maintenance Monitoring

TABLE 1 WEEKLY OPERATION AND MAINTENANCE MONITORING PRISTINE, INC. SITE - #3250

<u> </u>	- ₁			· · · · · · · · · · · · · · · · · · ·			1
Task No.	Program Description	Item/Description		Notes	; ;	Date Completed	
Task 1	Cap System Maintenance	Inspect security fencing for forced entry or damage * Inspect Site storm water drainage system (swales and perimeter piping) * Inspect Site cover for erosion * Inspect security fencing for erosion under chain link fabric		AlloK		7/7/18	1425
Task 2	ISVE System Maintenance	Inspect air compressor for oil level, noise or vibration and drain condensate Inspect pneumatic pumps for general operation Clean air compressor inlet filter and external parts of compressor and drive Manually test air compressor relief valve Inspect all pressure gauges, valves and meters for leaks and proper operation	-	Syste	f	7/1/18	
Task 3	Extraction Well Maintenance	Inspect well locks, covers and electrical structures for damage/signs of forced entry Check flow meters to ensure proper operation Check 5 offsite chambers for any indications of leakage.	,	A11 0	1	7/7/18	1405
Task 4	Treatment System Monitoring	Check air quality in building Conduct general visual inspection of treatment building for unusual conditions (corrosion/leaks/damage) Check supply of sampling equipment Check supply of safety equipment, tools and spare parts Check flow meters to ensure proper operation		Drips at filter All others	K	7/7/18	1438

Notes:

Inspection frequencies may be revised based on field conditions

* This activity is seasonal dependent

\WORD?\1000\3250\3250-NTURNAL-FOXCKS\Weekiy O&M \Inmitoring Form

TABLE 1 WEEKLY CRATION AND MAINTENANCE MONITORING PRISTINE, INC. SITE - #3250

Task No.	Program Description	Location	surement	Method	Reading	Date Completed	
ask 5	ISVE System Monitoring	Vapor collection piping (at treatment building)		CEM	NA	7/7/18	
Task 6	Shallow Groundwater Monitoring	Zone A forcemain (at treatment building) Zone B forcemain (at treatment building)	(cumulative amount eter pumped) l (cumulative amount eter pumped)	Flow meter	Zone B - 2 System	n 7/7/18 ff 7/7/18	
Task 7	Process Vessel Monitoring	Inspect caustic and acid tac Inspect carbon vessels		no Lea	KS All OK	7/7/18	1418
Task 8	Extraction Weil Monitoring	Control room	bing rate	Flow meter	EW1- 41, 7 EW2- 0.C.C EW3- EW3- EW5-	7/7/8	1435
Task 9	ISVE Piping	Zone B	F Removal	Portable Pump	NA	7/7/18	
Task 10	Hazardous Waste Storage	Eilterpress Room	lct Rolloff for Leaks	Visual Inspection	no Leaks	7/7/18	1401
Task 11	Jesting of Eye Wash Stations (3 total)	Chemical Storage Area Maintenance Room Near Catox Scrubber	Rater through unit	Press handle	All OK	7/7/18	H3D
Task 12	Check Contents of First Aid Kit	Control Room Maintenance Room	C& Inspect Container	Visual Inspection	All OK	7/7/18	1433

Attach Field Data Record Copy Project Manager
Field File

CRAIL WORDF, 3300, 12501, 1250 Attach Field Data Record

Operator Signature

TABLE 1 WEEKLY OPERATION AND MAINTENANCE MONITORING PRISTINE, INC. SITE - #3250

Esk No.	Program Description	Item/Description	Notes	Date Completed	
-T sk No. 25	Cap System Maintenance	Inspect security fencing for forced entry or damage * Inspect Site storm water drainage system (swales and perimeter piping) * Inspect Site cover for erosion * Inspect security fencing for erosion under chain link (abric	Allc	7/14/18	1305
Task 2	ISVE System Maintenance	Inspect air compressor for oil level, noise or vibration and drain condensate Inspect pneumatic pumps for general operation Clean air compressor inlet filter and external parts of compressor and drive Manually test air compressor relief valve Inspect all pressure gauges, valves and meters for leaks and proper operation	Sys. f	7/14/18	
Task 3	Extraction Well Maintenance	Inspect well locks, covers and electrical structures for damage/signs of forced entry. Check flow meters to ensure proper operation. Check 5 offsite chambers for any indications of leakage.	All	7/14/18	1250
Task 4	Treatment System Monitoring	Check air quality in building Conduct general visual inspection of treatment building for unusual conditions (corrosion/leaks/damage) Check supply of sampling equipment Check supply of safety equipment, tools and spare parts Check flow meters to ensure proper operation	Drips athousin	7/14/18	1315

Notes:

Inspection frequencies may be revised based on field conditions

7. Attach Field Data Record Ti.. Copy Project Manager Fi. Field File

[&]quot;This activity is seasonal dependent

TABLE 1 WEEPERATION AND MAINTENANCE MONITORING PRISTINE, INC. SITE - #3250

Task No.	Program Description	Location Measurement	Method	Reading	Date Completed	
% sk 5	ISVE System Monitoring	Vapor collection pips'OC (at treatment buildin	CEM	NA	7/14/18	
Task 6	Shallow Groundwater Monitoring	Zone A forcemain (allow (cumulative amount treatment building) of water pumped) Zone B forcemain (allow (cumulative amount treatment building) of water pumped)	Flow meter Flow meter	Zone B - System	7/14/18 F 7/14/18	
Task 7	Process Vessel Monitoring	Inspect caustic and a(including piping) Inspect carbon vesse	All ok	no Leaks	7/14/18	1300
Task 8	Extraction Well Monitoring	Control room Pumping rate	Flow meter	EW1-41.7 EW2-0f.P EW3- EW4-	7/14/18	1313
Task 9	ISVE Piping	Zone B Water Removal	Portable Pump	N/A	7/14/18	
Task 10	Hazardous Waste Storage	Filterpress Room Inspect Rolloff for Leaks	Visual Inspection	no Leaks	7/14/18	1245
Task 11	Testing of Eye Wash Stations (3 total)	Chemical Storage ARun water through unit Maintenance Room Near Catox Scrubbe	Press handle	AlloK	7/14/18	1308
Task 12	Check Contents of First Aid Kit	Control Room Open & Inspect Container Maintenance Room	Visual Inspection	AIIOK	7/4/18	1310

11. Attach Field Data Record
42. Copy Project Manager
72. Field File

Operator Signature

7018/07/21 1

TABLE 1 WEEKLY OPERON AND MAINTENANCE MONITORING ISTINE, INC. SITE - #3250

Task No.	Program Description	Item/Description		Notes		Date Completed	21 17:20
भेटून ्	Cap System Maintenance	Inspect security fencing for forced entry mage * Inspect Site storm water drainage systovales and perimeter piping) * Inspect Site cover for erosion * Inspect security fencing for erosion unnain link fabric		AII OK		7/21/18	1340
Task 2	ISVE System Maintenance	Inspect air compressor for oil level, noisebration and drain condensate Inspect pneumatic pumps for general opin Clean air compressor inlet filter and extensits of compressor and drive Manually test air compressor relief valve Inspect all pressure gauges, valves and it for leaks and proper operation		System	tt	7/21/18	
Task 3	Extraction Well Maintenance	Inspect well locks, covers and electrical such for damage/signs of forced entry. Check flow meters to ensure proper oper. Check 5 offsite chambers for any indicatif leakage.	у	System	²	7/21/18	1325
Task 4	Treatment System	Check ar quality in building Conduct general visual inspection of treat building for unusual conditions (corrosion/leaks/damage) Theck supply of sampling equipment Check supply of safety equipment, tools pare parts Check flow meters to encour proper oper:		System	l.	7/21/18	1355

Notes:

Proportion frequencies may be revised based on field conditions

- *This activity is seasonal dependent
- 1. Attach Field Data Record
- 2. Copy Project Manager
- 3. Field File

TABLE 1 WEEKLY OPERATION AND MAINTENANCE MONITORING PRISTINE, INC. SITE - #3250

Tas	Program Description	Location	Measurement	Method	Reading	Date Completed	
‡∴ask.	ISVE System Monitoring	Vapor collection piping (at treatment building)	VOC	CFM	N/A	7/21/18	.,
	Shallow Groundwater Monitoring	Zone A forcemain (at treatment building) Zone B forcemain (at treatment building)	Flow (cumulative amount of water pumped) Flow (cumulative amount of water pumped)	Flow meter	Zone A - & Lem Zone B - & F	7/21/18	·
1	Process Vessel Monitoring	Inspect caustic and acid tan Inspect carbon vessels	ks(including piping)	All OK	no Leak	7/21/18	1335
Task &	Extraction Well Monitoring	Control room	Pumping rate	Flow meter	EWI- EW2- EW3- EW4- EW5- COWN	7/21/18	1353
Task 9	ISVE Piping	Zone B	Water Removal	Portable Pump	N/A·	7/21/18	
Į.	Hazardous Waste Storage	Filterpress Room	Inspect Rolloff for Leaks Drams	Visual Inspection	no Leai	7/21/18	132D
Task 1	Testing of Eye Wash Stations (3 total)	Chemical Storage Area Maintenance Room Near Catox Scrubber	Run water through unit	Press handle	All OK	1/21/18	1345
Task 1	Check Contents of First Aid Kit	Control Room Maintenance Room	Open & Inspect Container	Visual Inspection	All OK	7/21/18	1350

Atield Data Record

Coject Manager

Fie

Operator Signature

Sask No.	Program Description	Item/Description	Notes	Date Completed	
Zask 1	Cap System Maintenance	Inspect security fencing forced entry or damage * Inspect Site storm walrainage system (swales and perimeter piping) * Inspect Site cover fortion * Inspect security fencion erosion under chain link fabric	All OK	1/28/18	1245
Task 2	ISVE System Maintenance	Inspect air compressor til level, noise or vibration and drain condensate Inspect pneumatic pumor general operation Clean air compressor inilter and external parts of compressor and drive Manually test air compor relief valve Inspect all pressure gau valves and meters for leaks and proper operation	System	7/28/18	
Task 3	Extraction Well Maintenance	Inspect well locks, covered electrical structures for damage/signs of forced entry Check flow meters to ere proper operation Check 5 offsite chamber any indications of leakage.	All OK	7/28/18	1230
Task 4	Treatment System Monitoring	Check air quality in built Conduct general visual section of treatment building for unusual conditions (corrosion/leaks/dama) Check supply of sampliquipment Check supply of safety epment, tools and spare parts Check flow meters to ent proper operation	orips at filter housing will monitor for rep All others OK	128/	1258

Notes:

Inspection frequencies may be revised based on field conditio

"This activity is seasonal dependent

4. Attach Field Data Record
Copy Project Manager
Field File

Task No.	Program Description	Location	Меаѕичетепі	Method	Read	Date Completed	
787 25k 5	ISVE System Monitoring	Vapor collection piping (at treatment building)	VOC	CEM		7/28/18	
Task 6	Shallow Groundwater Monitoring	Zone A forcemain (at treatment building) Zone 8 forcemain (at	Flow (cumulative amount of water pumped) Flow (cumulative amount	Flow meter	Zone System	7/28/18	
Task 7	Process Vessel Monitoring	treatment building) Inspect caustic and acid ta Inspect carbon vessels	of water pumped)	AIIOK	014	7/20/18	1240
Task 8	Extraction Well Monitoring	Control room	Pumping rate	Flow meter	EW1- EW2- EW3- EW4- EW5-	7/28/18	1255
Task 9	ISVE Piping	Zone B	Water Removal	Portable Pump		7/28/18	
Task 10	Hazardous Waste Storage	Filterpress Room	Inspect Rolloff for Leaks Drum S	Visual Inspection	NES	7/28/18	1225
Task 11	Testing of Eye Wash Stations (3 total)	Chemical Storage Area Maintenance Room Near Catox Scrubber	Run water through unit	Press handle	K	7/28/18	1250
Task 12	Check Contents of First Aid Kit	Control Room Maintenance Room	Open & Inspect Container	Visual Inspection	K	7/28/18	1253

Attach Field Data Record Copy Project Manager Field File

Operator Signature // Kbert SDn

O d.	Program Description	Item/Description	Notes	I)ate Completed	
#sk J	Cap System Maintenance	Inspect security fencing for forcetor damage * Inspect Site storm water drainaem (swales and perimeter piping) * Inspect Site cover for crossion * Inspect security fencing for erorder chain link fabric	AIIOK	8/4/18	1320
Task 2	ISVE System Maintenance	Inspect air compressor for oil leve or vibration and drain condensate Inspect pneumatic pumps for generation Clean air compressor inlet filter armal parts of compressor and drive Manually test air compressor relie Inspect all pressure gauges, valveneters for leaks and proper operation	System	8/4/18	
Task 3	Extraction Well Maintenance	Inspect well locks, covers and elestructures for damage/signs of forced entry Check flow meters to ensure propration Check 5 offsite chambers for any ions of leakage.	AII OK	8/4/18	1300
Task 4	Treatment System Monitoring	Check air quality in building Conduct general visual inspectionsment building for unusual conditions (corrosion/leaks/damage) Check supply of sampling equips Check supply of safety equipmen and spare parts Check flow meters to ensure progration	Drips at Filter housi will monitor for repair All others OK	75 8/ 5, /4/ 1/8	1335

Notes:

Inspection frequencies may be revised based on field conditions

^{*}This activity is seasonal dependent

\gtrsim						;	_
7 P. 002/	Program Description	Location	Measurement	Method	Reading	Date Completed	
87±sk	ISVE System Monitoring	Vapor collection piping (at treatment building)	VOC	CEM	NIA	8/4/18	
Task	Shallow Groundwater Monitoring	Zone A forcemain (at treatment building) Zone B forcemain (at treatment building)	Flow (cumulative amount of water pumped) Flow (cumulative amount of water pumped)	Flow meter	Zone B - 2 St	8/4/18	
Task	Process Vessel Monitoring	Inspect caustic and acid tal Inspect carbon vessels	nks(including piping)	All C	K no Lea	8/4/18	1315
Task	Extraction Well Monitoring	Control room	Pumping rate	Flow meter	EW1-41,9 EW2-0 FF FW3- EW4- EW5-	8/4/18	1333
Task	ISVE Piping	Zone B	Water Removal	Portable Pump	NIA	8/4/18	
Task	Hazardous Waste Storage	Filterpress Room	Inspect Bolloff for Leaks	Visual Inspection	no Lea	8/4/18	1255
Task	Testing of Eye Wash Stations (3 total)	Chemical Storage Area Maintenance Room Near Catox Scrubber	Run water through unit	Press handle	All Ok	8/4/18	1325
Task	Check Contents of First Aid Kit	Control Room Maintenance Room	Open & Inspect Container	Visual Inspection	All Ok	8/4/18	1330

ih Field Data Record

v Project Manager

2018/08/04, File

Operator Signature Robert Rolson

Ssk No.	Program Description	ltem/Description	Notes	Date Completed	
±,k1	Cap System Maintenance	Inspect security fencinged entry or damage * Inspect Site storm wanage system (swales and perimeter piping) * Inspect Site cover for * Inspect security fencirosion under chain link fabric	AlloK	8/11/18	1320
Task 2	ISVE System Maintenance	Inspect air compressor level, noise or vibration and drain condensate Inspect pneumatic purgeneral operation Clean air compressor in and external parts of compressor and drive Manually test air compelief valve Inspect all pressure gardes and meters for leaks and proper operation	System	8/11/18	
Ta5k 3	Extraction Well Maintenance	Inspect well locks, covelectrical structures for damage/signs of forced entry. Check flow meters to eroper operation. Check 5 offsite chambeny indications of leakage.	AlloK	8/11/18	1305
Task 4	Treatment System Monitoring	Check air quality in bui Conduct general visualion of treatment building for unusual conditions (corrosion/leaks/dama Check supply of samplipment Check supply of safety tent, tools and spare parts Check flow meters to eroper operation	Drips at filter housings and FFT#2 pump. Will monitor for repairs. All others OK	8/11/18	1335

Notes:

Inspection frequencies may be revised based on field conditi

*This activity is seasonal dependent

Attach Field Data Record
Copy Project Manager
Field File

Zi A. <u>Sask No.</u>	Program Description	Location	Measurement	Method	R	eading	Date Completed	
₩k5	ISVE System Monitoring	Vapor collection piping (at treatment building)	VOC	CFM			8/11/18	
Iask 6	Shallow Groundwater Monitoring	Zone A forcemain (at treatment building) Zone B forcemain (at treatment building)	Flow (cumulative amount of water pumped) Flow (cumulative amount of water pumped)	Flow meter		one A- System one B- off	8/11/18	
Task 7	Process Vessel Monitoring	Inspect caustic and acid ta Inspect carbon vessels	nks(including piping)	All	oK	noeaks	8/11/18	1315
7'ask 8	Extraction Well Monitoring	Control room	Pumping rate	Flow meter	E	W1-41,3 W2-04C W3- W4- W5-	8/11/	1333
Task 9	ISVE Piping	Zone B	Water Removal	Portable Pump		V	8/11/18	
Task 10	Hazardous Waste Storage	Filterpress Room	Inspect -Rolloff for Leaks Dram 5	Visual Inspection		AIOK	8/11/18	1300
Task 11	Testing of Eye Wash Stations (3 total)	Chemical Storage Area Maintenance Room Near Catox Scrubber	Ron water through unit	Press handle		AIDK	8/11/18	1325
Task 12	Check Contents of First Aid Kit	Control Room Maintenance Room	Open & Inspect Container	. Visual Inspection		AIDK	8/11/18	1336

2018/08/11 14:56 Attach Field Data Record Copy Project Manager Field File

Operator Signature Robe? Ober Kon

Task No.	Prc Desc	Item/Description	Notes	Date Completed	
öfikata Żisk 1 	Cap Syst Mainten	Inspect security fencing for forced entry or damage Inspect Site storm water drainage system (swales and perimeter piping) Inspect Site cover for crosion Inspect security fencing for crosion under chain link fabric	All OK	8/18/18	į
Task 2	ISVE Sys Mainten	Inspect air compressor for oil level, noise or vibration and drain condensate luspect pneumatic pumps for general operation Clean air compressor inlet filter and external parts of compressor and drive Manually test air compressor relief valve Inspect all pressure gauges, valves and meters for leaks and proper operation	System	8/18/18	
Task 3	Extractic Mainten	Inspect well locks, covers and electrical structures for damage/signs of forced entry Check flow meters to ensure proper operation Check 5 offsite chambers for any indications of leakage.	All OK	8/18/18	1
Task 4	Treatme Monitor	Check air quality in building Conduct general visual inspection of treatment building for unusual conditions (corrosion/leaks/damage) Check supply of sampling equipment Check supply of safety equipment, tools and spare parts Check flow meters to ensure proper operation	orips at filter housings will mon for for repairs All others OK	8/18/18	1.

Notes:

Inspection frequencies evised based on field conditions

"This activity is seasoident

8. Attach Field Datd
C. Copy Project Ma
Field File

Æ 1 WEEKLY OPERATION AMINTENANCE MONITORING PRISTINE. SITE - #3250

Task No.	Program Description	Location	Measurement	Method	Reading	Date Completed	
女 2 2 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 3 3 3	ISVE System Monitoring	Vapor collection piping (at treatment building)	VOC	CEM	NA	3/18/18	
Task 6	Shallow Groundwater Monitoring	Zone A forcemain (at treatment building) Zone B forcemain (at treatment building)	Flow (cumulative an of water pumped) Flow (cumulative an of water pumped)	Flow meter Flow meter	Zone A- © System Zone B- © OFF	8/18/18	1
Task 7	Process Vessel Monitoring	Inspect caustic and acid ta Inspect carbon vessels	nks(including piping)	AlloK	no Leaks	8/18/18	Ι.
Task 8	Extraction Well Monitoring	Control room	Pumping rate	Flow meter	EW1- 410 & EW2- 0 F C EW3- EW4- EW5-	3/18/12	1205
Task 9	ISVE Piping	Zone B	Water Removal	Portable Pump	NIA	8/18/18	
Task 10	Hazardous Waste Storage	Filterpress Roum	Inspect Rolloff for Le	Visual Inspection	no Leaks	8/18/18	1128
Task 11	Testing of Eye Wash Stations (3 total)	Chemical Storage Area Maintenance Room Near Catox Scrubber	Run water through r	Press handle	AILOK	8/18/18	
Task 12	Check Contents of First Aid Kit	Control Room Maintenance Room	Open & Inspect Con	Visual Inspection	A110K	81.818	1203

Attach Field Data Record Copy Project Manager Field File

Operator Signature

Robert Robertson

A	Program Description	Item/Pescription	Notes		Date Completed	
₩ask 1	Cap System Maintenance	Inspect security fencing for forced entir damage * Inspect Site storm water drainage syn (swales and perimeter piping) * Inspect Site cover for erosion * Inspect security tencing for erosion fer chain link fabric	AIIOK		8/25/18	1445
Task 2	ISVE System Maintenance	Inspect air compressor for oil level, noor vibration and drain condensate Inspect pneumatic pumps for general ration Clean air compressor inlet filter and e nal parts of compressor and drive Manually test air compressor relief val Inspect all pressure gauges, valves an eters for leaks and proper operation	Syster	n ff	8/25/8	
Task 3	Extraction Well Maintenance	Inspect well locks, covers and electric ructures for damage/signs of forced entry Check flow meters to ensure proper oution Check 5 offsite chambers for any indions of leakage.	All OK		8/25/18	1430
Task 4	Treatment System Monitoring	Check air quality in building Conduct general visual inspection of timent building for unusual conditions (corrosion/leaks/damage) Check supply of sampling equipment Check supply of safety equipment, tound spare parts Check flow meters to ensure proper ortion	Drips at filter hand FFT #2 pump sea will monitor for repe	ics K	8) /25) /18	1503

Notes:

Inspection frequencies may be revised based on field conditions

*This activity is seasonal dependent

Attach Field Data Record Copy Project Manager

2018/08/25, 16:3 Arield Data Record Coject Manager

98, P. 002/	Program Description	Location	Measurement	Method	Reading	Date Completed
₹3k 2	ISVE System Monitoring	Vapor collection piping (at treatment brilding)	VOC	CEM	NA	8/25/18
	Shallow Groundwater Monitoring	Zone A forcembin (at treatment building) Zone B forcemain (at treatment building)	Flow (cumulative amount of water pumped) Flow (cumulative amount of water pumped)	Flow meter	Zone A - @ Stem Zone B - @ Off	8/25/18
	Process Vessel Monitoring	Inspect causticand acid tar Inspect carbon vessels	nks(including piping)	,41	1 OK	8/15/201440
	Extraction Well Monitoring	-Control room	Pumping rate	Flow meter	EW1- 40.4 EW2- 0.4 EW3- EW4- EW5-	8/25/18 1500
Task!	ISVE Piping	Zone B	Water Removal	Portable Pump	NIA	8/25/18
	Hazardous Waste Storage	Filterpress Room	Inspect-Rolloff for Leaks Drums	Visual Inspection	no Lis	8/25/18:427
	Testing of Eye Wash Stations (3 total)	Chemical Storage Area Maintenance Room Near Catox Scrubber	Run water through unit	Press handle	A11 (8/25/14/50
	Check Contents of First Aid Kit	Control Room Maintenance Room	Open & Inspect Container	Visual Inspection	All	8/25/18 1457

Operator Signature _

Pristine Water Levels Job# 003250

Completed By: A. Schwartz/ C. McLaughin

Date Completed: 07/16/18

	,	, 			
Well I.D.	DTW	Well I.D.	DTW	Well I.D.	DTW
EW1	44.40	MW68	42.13	PZ1S	41.10
EW2	25.80	MW69	41.33	PZ1D	41.11
EW3	26.93	MW70	41.65	PZ2	27.00
EW4	27.96	MW71	22.61	PZ3	27.57
EW5	25 00	MW72	22.67	PZ4	28.36
GW45	Dry	MW73	22.31	PZ5	29.39
GW46	16.84	MW74	28.00	PZ6	27.49
GW47	40.60	MW75	28.89	PZ7D	27.71
GW50	18.14	MW76	28.06	PZ7S	27.61
GW51	18.15	MW77	21.41		
GW53	12.29	MW78	21.38		
GW54	Broken	MW79	21.52		-
GW55	29.47	MW80	40.29		
GW56	36.79	MW81	43.85		
GW59	13.73	MW82	43.05		
GW60A	13.92	MW83	39.20		
GW62	Dry	MW84	39.83		
GW63	35.38	MW85	40.82		
GW64	Damaged	MW86	27.82		
GW65	36.46	MW87	27.98	7	
GW66	10.06	MW88	28.01	7	
GW108	45 10	MW89	27.92	7	
GW109	43.92	MW90	Abandoned	7	
GW-P1	12.80	MW91	13 56		
GW-P2	21.82	MW92	18.24		
GW-P3	22.26	MW93	18.30	7	
GW-P4	20.49	MW94	28 39	7	
GW-P5	13 21	MW95	28.40	7	
GW-P6	27.21	MW96	28.30	7	
GW-P7	Dry	MW97	28.66	7	
GW-P8	22.58	MW98	21 48		
GW-P9	21.36	MW99	21.59	1	
		MW100	13.22		
H-218	31 38	MW101	31.06	7	
H-219	26.29	MW102	23.41		
H-220	31.56	MW103	23.77	7	
H-221	Semi on Well	MW104	23.68	7	
H-222	Semi on Well	MW105	23.49	7	
H-223	Semi on Well	MW106	14.33	7	
H-224	26 46	MW107	12 96	7	
	 				

Task No.	Program Description	Item/Description	Notes	Date Completed	
rask i	Cap System Maintenance	Inspect security fencing for forced entry or damage * Inspect Site storm water drainage system (swales and perimeter piping) * Inspect Site cover for erosion * Inspect security fencing for erosion under chain link fabric	All OK	9/1/18	1350
Task 2	ISVE System Maintenance	Inspect air compressor for oil level, noise or vibration and drain condensa Inspect pneumatic pumps for general operation Clean air compressor inlet filter and external parts of compressor and dru Manually test air compressor relief valve Inspect all pressure gauges, valves and meters for leaks and proper opera	System	9/1/18	
Task 3	Extraction Well Maintenance	Inspect well locks, covers and electrical structures for damage/signs of form Check flow meters to ensure proper operation Check 5 offsite chambers for any indications of leakage.	All OK	1 11-	1335
Task 4	Treatment System Monitoring	Check air quality in building Conduct general visual inspection of treatment building for unusual condi (corrosion/leaks/damage) Check supply of sampling equipment Check supply of safety equipment, tools and spare parts Check flow meters to ensure proper operation	prips at FFT#2 pump & A/S manhole door will moving for repairs, All others Ox	9/1/18	1407

Notes:

Inspection frequencies may be revised based on field conditions

Attach Field Data Record
Copy Project Manager
Field File

^{*}This activity is seasonal dependent

700/			PRISTINE, INC.	SITE - #3250			
Task No.	Program Description	ocation	Measurement	Method	Reading	Date Completed	
ე_ask 5	ISVE System Monitoring	ipor collection piping I treatment building)	VOC	CEM	NA	9/1/18	
Task 6	Shallow Groundwater Monitoring	one A forcemain (at satment building) me B forcemain (at satment building)	Flow (cumulative amount of water pumped) Flow (cumulative amount of water pumped)	Flow meter	Zone A - @ SySte	m 9/1/18	
Task 7	Process Vessel Monitoring	spect caustic and acid ta spect carbon vessels	nks(including piping)	All OK		9/1/18	1345
Task 8	Extraction Well Monitoring	ntrol room	Pumping rate	Flow meter	EW1-39.9 EW2-0.46 EW3- EW4- EW5-	9/1/18	1405
Task 9	ISVE Piping	ne B	Water Removal	Portable Pump	NA	9/1/18	
Task 10	Hazardous Waste Storage	terpress Room	inspect Rollu ff for Leaks DrumS	Visual Inspection	no Leaks	9/1/18	1330
Task 11	Testing of Eye Wash Stations (3 total)	emical Storage Area intenance Room ar Catox Scrubber	Run water through unit	Press handle	AII OK	9/1/18	1353
Task 12	Check Contents of First Aid Kit	ntrol Room intenance Room	Open & Inspect Container	Visual Inspection	AlloK	9/1/18	1355

Attach Field Data Record Copy Project Manager Field File

Operator Signature

Robert Robertson

Task No.	Program Description	Item/Description	Notes	Date Completed
Task 1	System intenance	Inspect security fencing for forced entry or damage * Inspect Site storm water drainage system (swales and perimeter piping) * Inspect Site cover for erosion * Inspect security fencing for erosion under chain link fabric	ALL KAY	glelle GTL
Task 2	E System ntenance	Inspect air compressor for oil level, noise or vibration and drain condensate inspect pneumatic pumps for general operation. Clean air compressor inlet tilter and external parts of compressor and drive Manually test air compressor relief valve. Inspect all pressure gauges, valves and meters for leaks and proper operation.	Not CLENTLY RUNN	1/8/18 En
Task 3	laction Well Intenance	Inspect well locks, covers and electrical structures for damage/signs of forced entry. Check flow meters to ensure proper operation. Check 5 offsite chambers for any indications of leakage.	EW 2, CAGE OF	a/e/18
Task 4	itment System hitoring	Check air quality in building Conduct general visual inspection of treatment building for unusual conditions (corrosion/leaks/damage) Check supply of sampling equipment Check supply of safety equipment, tools and spare parts Check flow meters to ensure proper operation	Aux	9/2/18

Notes:

Inspection freacies may be revised based on field conditions

- * This activity asonal dependent
- 1. Attach FieData Record
- 2. Copy Proj Manager
- 3. Field File

ask No.	Program Description	Location	Measurement	Method	Reading	Date Completed
ik 5	ISVE System Monitoring	Vapor collection piping (at treatment building)	/OC	CEM	NA	9/8/18
ık 6	Shallow Groundwater Monitoring	Zone A forcemain (at treatment building) Zone B forcemain (at treatment building)	ilow (cumulative amount of water pumped) 'low (cumulative amount of water pumped)	Flow meter Flow meter Flow meter	8	TUTAL 1 9/8 @ 229690 TETAL 2 (TATCH) ETAL 16 ET
k7	Process Vessel Monitoring	Inspect caustic and acid tai Inspect carbon vessels				
k 8	Extraction Well Monitoring	Control room	rumping rate @ 38,29gp.a (METER)	Flow meter ALL (EW1- 28:165367 EW2- EW3- EW4- EW5- RUNNING	
k 9	ISVE Piping	Zone B	Water Removal	Portable Pump	DID NOT PU WATER	4/8/K.
k 10	Hazardous Waste Storage	Filterpress Room	Inspect Relieff for Leaks	Visual Inspectio	3 DRUMS 114 STURME/ACC	MAZ-LASTE 9/e/je
<u>< 11</u>	Testing of Eye Wash Stations (3 total)	Chemical Storage Area Maintenance Room Near Catox Scrubber	hin water through unit	Press handle	Au ok	9/8/18
<12	Check Contents of First Aid Kit	Control Room Maintenance Room	(pen & Inspect Container	Visual Inspection	ALL O	K 9/2/18

Attach Field Data Record Copy Project Manager Field File

Operator Sigrre

1215 hrs

Jask No.	rogrum scription	Item/Description	Notes	Date Completed	
Susk 1	Capstem Mainance	Inspect security fencing for forced entry or damage * Inspect Site storm water drainage system (swales and perimeter piping) * Inspect Site cover for crosion * Inspect security fencing for crosion under chain link fabric	All Ok	9/15/18	1255
Task 2	ISV _/ stem Manance	Inspect air compressor for oil level, noise or vibration and drain condensate inspect pneumatic pumps for general operation. Clean air compressor inlet filter and external parts of compressor and drive Vianually test air compressor relicf valve. Inspect all pressure gauges, valves and meters for leaks and proper operation.	Sysn off	9/15/18	
Task 3	Extion Well Manance	Inspect well locks, covers and electrical structures for damage/signs of forced entry Check flow meters to ensure proper operation Check 5 offsite chambers for any indications of leakage.	AIIK	9/15/18	1235
Task 4	Treent System Morning	Check air quality in building Conduct general visual inspection of treatment building for unusual conditions (corrosion/leaks/damage) Check supply of sampling equipment Check supply of safety equipment, tools and spare parts Check flow meters to ensure proper operation	Drips at FFDump and ABno.1 mx cover. All other	9/15/18	1310

Votes:

Inspection freques may be revised based on field conditions

"This activity is sonal dependent

84. Attach Fieldata Record
Copy Projedanager
Field File
Straff

Task No.	Program Description	Location	Measurement	Method	Reading	Date Complete
Sesk 5	ISVE System Monitoring	Vapor colon piping (at treatmouilding)	VOC	СЕМ	NA	9/15/1
Task 6	Shallow Groundwater Monitoring	Zone A fmain (at treatmentiding) Zone B forain (at	Flow (cumulative amount of water pumped) Flow (cumulative amount of water pumped)	Flow meter	Zone B -	CC 9/16/11
Task 7	Process Vessel Monitoring	ireatmentiding) Inspect car and acid tar Inspect car vessels	_ <u></u>	AII OF	1 1/2	9/15/15
Task 8	Extraction Well Monitoring	Control n	Pumping rate	Flow meter	EW1-41, 3 EW2-6ff EW3- EW4- EW5-	9/15/
Task 9	ISVE Piping	Zone B	Water Removal	Portable Pump	NJA	9/15/1
Task 10	Hazardous Waste Storage	Filterpresom	Inspect Rolloff for Leaks Drum5	Visual Inspection	no Leaks	9/15/12
Task 11	Testing of Eye Wash Stations (3 total)	Chemical age Area MaintenaRoom Near Catcrubber	Run water through unit	Press handle	All OK	9/15/1
Task 12	Check Contents of First Aid Kit	Control h MaintenaRoom	Open & Inspect Container	Visual Inspection	All ok	9/15/1

Attach Field Data Record Copy Project Manager

Field File

Operator Signature Mobertson

					-
Task No.	Program Description	Item/Den	Notes	Date Completed	
Task 1	Cap System Maintenance	Inspect sencing for forced entry or damage * Inspect m water drainage system (swales and perimeter piping) * Inspect r for erosion * Inspect fencing for erosion under chain link fabric	All OK	9/22/18	1210
Task 2	ISVE System Maintenance	Inspect aissor for oil level, noise or vibration and drain condensate Inspect pr pumps for general operation Clean air oor inlet filter and external parts of compressor and drive Manually ompressor relief valve Inspect all: gauges, valves and meters for leaks and proper operation	System of	f 9/22)	
Task 3	Extraction Well Maintenance	Inspect wecovers and electrical structures for damage/signs of forced entry Check flowto ensure proper operation Check 5 of neers for any indications of leakage.	All OK	9/22/18	1150
Task 4	Treatment System Monitoring	Check air a building Conduct genal inspection of treatment building for unusual conditions (corrosion/amage) Check suppopling equipment Check suppety equipment, tools and spare parts Check flowo ensure proper operation	All others OK	\perp 1//	1222

Notes:

Inspection frequencies may be revised based on fittions

Attach Field Data Record
Copy Project Manager
Field File

2018/09/22 13::

^{*} This activity is seasonal dependent

#515 P.002/002

TABLE 1 WEEKLY OPERATION AND MAINTENANONITORING PRISTINE, INC. SITE - #3250

	T					[7
Task No.	Program Description	Location	Measurement	Method	Reading	Date Completed	
Task 5	ISVE System Monitoring	Vapor collection piping (at treatment building)	VOC	CEM	NA	9/22/18	
Task 6	Shallow Groundwater Monitoring	Zone A forcemain (at treatment building) Zone B forcemain (at treatment building)	Flow (cumulative amount of water pumped) Flow (cumulative amount of water pumped)	Flow meter Flow meter	Zone A - @ 5y5+@	C C 19/1	
Task 7	Process Vessel Monitoring	Inspect caustic and acid tan Inspect carbon vessels	ks(including piping)	A11 :	no Leaks	9/22/18	1205
Task 8	Extraction Well Monitoring	Control room	Pumping rate	Flow meter	EW1- 39.7 EW2- of F EW3- EW4- EW5-	91	1220
Task 9	ISVE Piping	Zone B	Water Removal	Portable Pump	NA	9/22/18	
Task 10	Hazardous Waste Storage	Filterpress Room	Inspect Rolloff for Leaks Drums	Visual Inspection	no Leaks	9/22/18	₹
Task 11	Testing of Eye Wash Stations (3 total)	Chemical Storage Area Maintenance Room Near Catox Scrubber	Run water through unit	Press handle	All OK	1/22/18	
Task 12	Check Contents of First Aid Kit	Control Room Maintenance Room	Open & Inspect Container	Visual Inspectio	AII OK	9/22/18	i _

Attach Field Data Record
Copy Project Manager
Field File
Coa Field File
Coa Fischow, 2007, 2251, 1250-1417

CRA ENHOROPP, 3001/1251/1250-14/TERNAL-KXC/GN/Veekly O&M Mortloring Form

ask No.	Program Description	Item/Description	Not	tes	Date Complete	2d_
Task I	Cap System Maintenance	Inspect monitoring/piemeters/soil gas probes Ensure all soil gas probare visible		All OK	9/29/19	3 1045
Task 2	ISVE System Maintenance	Change compressor airtiers quarterly Change duel inline filtefor air dryers in May & December Change oil in compress every 6 months starting at summer shutdown Use only synthetic oil splied by champion		System	9/25/1.	8
Task 3	Extraction Well Maintenance	Check pumps for unusi knocks or vibrations Inspect electrical contro' supply/amperage draw Inspect chambers for wr accumulation / line-valve leakage Cycle extraction wells I2 & EW4 on for 1 hour		Completed	9/19/	18 1630
Task 4	Treatment System Monitoring	Check HVAC exhaust is for proper operation Inspect fire extinguisheand smoke alarms Inspect lighting, electrisystems and power cords Inspect sump pit gratin Verify general operation main building sump pumps Remove and clean in-listrainers		All OK	9//24/	8 1440
Task 5	Material Storage	Visually inspect used cank to check for spillage and determine whether tank needs to be empti. Vendor has been called to empty		All OK	8/23/1	8 133c
Task 6	Equipment Inspection	Inspect spill containmematerial at north mandoor area Inspect broom and shot at roll off area Confirm presence of atom at main mandoor and north mandoor		All OK	9/25/	8 103C

1. Copy Project Manager
2. Field File
CIA 3250/TBL2-OAM

Page 2 of 2

Γαsk No.	Program Description	Qs#	Locat	Measurement	Method	Trench Branch		Date Completed
Task 7	ISVE System		Cas Pes (SG-66 locations)	Vacuum	Portable Vacuum Gauge		(sattached sheet)	
	Monitoring	N/A	Gas Pies	Soil Temperatures	Temperature Probe			
			Air irtion wells (AIW 1-7)	Pressure	In-line pressure gauge			
			Vaposllection piping (6)	Vacuum ("H ₂ O)	In-line vacuum gauge		\$1 V\$2 V\$3	
						south:		
						north.		3
		N/A	Vapoillection piping (at	Flow rate (FPM)	In-line velocity meter	south		
		147.1	vacutheaders and wells) (6)		<u> </u>	north:		
			Vapoillection piping (at	VOC	Portable Instrument (PID)	south:		_
			vacuulteaders and wells) (6)			north.		-
ľask 8	Eguipment	N/A	Laddospection	Inspect for wear	Visual			1011
	Inspection	NyA	Extern Cords Inspection	Inspect for wear	Visual		1711 OK	8/23/18
Task 9	Fire Protection	N/A	Porta Fire Extinguisher	Check Pressure Monthly	Visual		iomplete	9/24/18
Task 10	Fire Protection	N/A	Sprint System	Take Pressure Reading Monthly	In-Line Pressure Gauge		112 21	9/1
				Open Drain Quarterly	Valve		HII OK	112/18
Task 11	Alarm System	N/A	ADT ntrol Panel	Test System	Trigger all alarms		III OK	9/12/18

TABLE 2

PRISTINE, INC. SITE - #3250

1. Copy Project Manager
2. Field File
4. Copy Project Manager
6. Copy Project

Task No.	Program Description	Item/Description	Notes	Date Completed
Task 1	Cap System Maintenance	Inspect security fencing for forced entrage Inspect Site storm water drainage systles and perimeter piping) Inspect Site cover for erosion Inspect security fencing for erosion uin link fabric	OK	9/24/8
Tauk 2	ISVE System Maintenance	Inspect air compressor for oil level, noiration and drain condensate Inspect pneumatic pumps for general o Clean air compressor inlet filter and exirts of compressor and drive Manually test air compressor relief valv Inspect all pressure gauges, valves and or leaks and proper operation	System off	9/29/18
Task 3	Extraction Well Maintenance	Inspect well locks, covers and electricales for damage/signs of forced entry Check flow meters to ensure proper op: Check 5 offsite chambers for any indicaeakage.	ok	9/29/18
Task 4	Treatment System Monitoring	Check air quality in building Conduct general visual inspection of tremilding for unusual conditions (corrosion/leaks/damage) Check supply of sampling equipment Check supply of safety equipment, toolare parts Check flow meters to ensure proper ope	ok-	વૃષ્ટ્રિનીહ

Notes:

Inspection frequencies may be revised based on field conditions

* This activity is seasonal dependent

16. Attach Field Data Record
17. Copy Project Manager
18. Field File
10/01/8

Task No.	Program Descrip	Location	Measurement	Method	Reading	Date Completed
Task 5	l ·	Vapor collection piping (at treatment building)	VOC	СЕМ	N/A .	9/29/18
Task 6	Shallow Groundwate Monitoring	Zone A forcemain (at treatment building)	Flow (cumulative aint of water pumped)	Flow meter	Zone A- System® off	9/29/18
		Zone B forcemain (at reatment building)	Flow (cumulative aunt of water pumped)	Flow meter	Zone B- System & off	9terle
Task 7	Process Vessel Monitoring	Inspect caustic and acid tal inspect carbon vessels	nks(including piping)		No Leaks	9/20/8
Task 8	Extraction Well Monitoring	Control room	Puniping rate	Flow meter	EW1- 39.6 EW2- EW3- EW4- EW5-	વિટ્યાંક
Task 9	ISVE Piping	Zone B	Water Removal	Portable Pump	NA	9/29/18
Task 10	Hazardous Waste Storage	ilterpress Room	Inspect Rolloff for Is Drums	Visual Inspection	OK-no leaks	9/24/19
Task 11	Testing of Eye Wash Stations (3 total)	Themical Storage Area Jaintenance Room Jear Catox Scrubber	Run water through:	Press handle	ok	9/24/18
Task 12	Check Contents of First Aid Kit	Control Room laintenance Room	Open & Inspect Coner	Visual Inspection	OK - Stemeen related	9/21/18

Attach Field Data Record
Copy Project Manager
Field File

Operator Signature

Attachment 4
Summary of Groundwater & ISVE Treatment System
Downtime

SUMMARY OF GROUNDWATER AND ISVE DOWNTIME FOR THE MONTH OF JULY 2018 PRISTINE, INC. SITE READING, OHIO

July 20, 2018	Severe storm in the late afternoon. Extremely loud thunderclap happened and everything associated with the system went down. The treatment building appears to have been hit by lightning. Computer screen went dark, pumps turned off and the system went down. Determined that the PLC had faulted out. Reset the PLC. Rebooted the system computer. The computer seems very slow. The computer is going through various checks. After waiting for several hours, the computer is only at 17% completion on system checks.
July 21, 2018	System Down due to lightning incident
July 22, 2018	System Down due to lightning incident
July 23, 2018	System Down due to lightning incident
July 24, 2018	System Down due to lightning incident. Was able to get system back online. System will not stay running due to pH analyzers. Discovered one analyzer was still not operational after replacing internal fuse. Replaced fuse in A/S no 2 analyzer but the analyzer is bad. Restarted system to troubleshoot. Worked with J. Worrall over the phone to test PLC functions. Started testing various components of the pumping system. Along with the A/S no 2 analyzer, Filter Feed Tank no 2 flow transmitter, Filter Feed Tank no 2 level control valve, Pretreat Tank no 2 acid addition pump, and the no 2 clarifier rake drive have all been damaged due to the lightning strike.
July 25, 2018	Removed bad Filter Feed Tank no 2 flow transmitter and replaced with spare. Removed bad Filter Feed Tank no 2 level control valve Pulled no 2 E/A tank flow control valve and installed in the place of the bad level control valve Power overloads were tripped for the air stripper blower. Reset overloads Started system back up Calibrated pH analyzers/ probes GHD personnel onsite for groundwater sampling round Changed out cartridge filters
July 26, 2018	Received call in the early morning stating system was down. Came in and restarted system. System down due to pH issue. Increased acid addition at A/S no 1 to compensate for no acid flow at Pretreat Tank no 2.

SUMMARY OF GROUNDWATER AND ISVE DOWNTIME FOR THE MONTH OF AUGUST 2018 PRISTINE, INC. SITE READING, OHIO

August 01, 2018	Received call in the early a m stating the system was down Restarted system from home. Drove to site and replaced cartridge filters.
August 02, 2018	Bray valve that was used in place of the one damaged by the lightning strike is starting to malfunction. Causing the E/A pump to turn off periodically to compensate (downtime).
August 03-05, 2018	System down due to lightning strike damage.
August 06, 2018	Filter feed tank (FFT) no.2 level control valve still malfunctioning (downtime). Increased valve parameters in the programming to limit how far the valve can close to test whether this would eliminate valve "sticking".
August 10, 2018	Found level transmitter for E/A tank throwing false level readings intermittently causing downtime. Pulled transmitter and cleaned ultrasonic signal reading surface and reinstalled.
August 11, 2018	Received call in the early a.m. stating system was down. Found cartridge filters plugged (downtime) with blackish gray colored mud like material Opened up filter housings and flushed clean of mud like material. Installed new filters and restarted system.
August 28, 2018	Prepped new filter housings for installation. Initiated system shutdown procedures for filter housing install (downtime). Removed old cartridge filter housings. Installed new cartridge filters housings. Installed new filters into housings. Sprayed out inside/cleaned old filter housings.
August 29, 2018	Automatic valve at FFT no 2 started malfunctioning in the early a.m. (downtime). Manually cycled valve several times to free up valve.

SUMMARY OF GROUNDWATER AND ISVE DOWNTIME FOR THE MONTH OF SEPTEMBER 2018 PRISTINE, INC. SITE READING, OHIO

September 11, 2018 Shut system down to pull filter feed tank no.2 level control valve and install new one. Downtime caused by EW1 tripping.

September 12, 2018 Site went down a little after 11:00 o'clock last night. No alarms showing reason for system going down. Discovered that EW1 has tripped out at power disconnect Reset power and took current readings. Readings are well within specs.

September 13, 2018 EW1 tripped out again at approximately 11.30 pm.(downtime)

Reset EW1 which had tripped out last night. Reset EW1 power disconnect. Calibrated pH analyzers/probes. Changed out cartridge filters. Shoveled condensed sludge in drum with cartridge filters. EW1 tripped out again at approximately 1600 hrs. Trends show EW1 only trips out when the motor starts. Disassembled starter relay and inspected contacts.

Discovered system had gone down due to pH out of range at the air stripper (downtime). This was caused by the filter feed tank pump turning off to compensate for the level control valve not working. Restarted system and set flow from filter feed tank manually at pump so that the E/A tank transfer pump will turn off to compensate for the level control valve not working. This will insure that the filter feed tank pump will not turn off causing pH out of range

September 16, 2018 EW1 tripped out again at 0430 (downtime).

September 17, 2018 EW1 tripped out (downtime) Reset power disconnect. Started system back up.

September 18, 2018 Adjusted acid addition to compensate for system flows being in manual (downtime).

September 19, 2018 Initiated system shutdown procedures to allow EW1 pump to be pulled.

Layne pulled the EW1 pump and motor. When installing the new pump, motor, and cable the motor would direct short when submerged in water.

Tried several times to get power lead to seal at motor connection without success. Attempted to install second motor and lead we had onsite without success also. Contacted vendor and they stated we would have to send them the motor and lead so they could seat the lead correctly. Installed new pump with old motor and lead. Started system back up.

September 24-30, 2018 Data corrupted when computer lost communication.